NanoMUD
NanoMUD 是一个基于深度学习框架,用于检测纳米孔直接 RNA 测序数据中的尿苷修饰(例如假尿苷和 N1-甲基假尿苷)。它提供了具有单分子分辨率的准确修饰检测(Ψ模型:最小 AUC = 0.86,最大 AUC = 0.99;m1Ψ模型:最小 AUC = 0.87,最大 AUC = 0.99),并在不同序列背景下提供无偏的位点水平化学计量估算。NanoMUD 将成为促进改良治疗 IVT RNAs 研究的强大工具,并为体内转录 RNA 物种上的假尿苷和 N1-假尿苷的分布和化学计量提供有用的见解。
数据处理
基础呼叫
确保您的数据包含 /Analyses/Basecall
组。如果没有,请使用 Guppy、Albacore 或其他基础呼叫器进行本地基础呼叫。
Pod5 转 Fast5
如果您的原始数据是 POD5 格式,您可以使用 pod5 包将其转换为 fast5。
pod5 convert to_fast5 pod5/*.pod5 --output fast5/*.fast5
多到单 fast5
确保您的数据以单 fast5 格式存在,因为 Tombo 只能接受单 fast5 文件作为输入。
Resquiggle
Tombo resquiggle 模块将重新定义从原始信号到参考序列的分配。Tombo 文档可以在此处找到:https://nanoporetech.github.io/tombo/tombo.html。请确保在运行 Tombo resquiggle 模块时指定 --include-event-stdev
选项。
使用 NanoMUD 进行分析
特征提取
cd /path/to/qc_final
python3 ./code/feature_extraction.py \
-i /path/to/fast5_dir \
-o /path/to/output \
-t 3 --group RawGenomeCorrected_000
读取级概率预测
我们提供了针对 psi 和 m1psi 预测的微调模型,请为您感兴趣的修饰类型选择相应的模型。
python3 ./code/predict_mod_probs.py \
-i ./output/tmp # 特征提取的输出 \
-o ./output/probs.csv
--device cuda:0 \
--model ./model/psi/biLSTM_model \
--scaler ./model/psi/scaler
位点水平化学计量估算
python3 ./code/mod_rate_calibration.py \
-i ./output/mod_rate.csv \
--device cuda:0 \
--model ./model/psi/regression_model