IL-AD

IL-AD

我们利用机器学习方法改进纳米孔测序的碱基识别器,以检测核苷酸修饰。首先,我们应用增量学习技术来提高富含修饰序列的碱基识别,这些序列通常具有很高的生物学兴趣。在确定了序列骨架后,我们进一步对单个核苷酸进行异常检测,以确定它们的修饰状态。通过这种方式,我们的流程承诺实现单分子、单核苷酸和序列上下文无关的修饰检测。

依赖项

  • samtools: https://github.com/samtools/samtools
  • taiyaki: https://github.com/nanoporetech/taiyaki/tree/master/taiyaki

使用方法

增量学习

训练过程
python ./scripts/train.py model_template.py pretained_model.checkpoint input.hdf5 --device cuda:0 --outdir path/to/output \
--save_every epochs --niteration niterations --lr_max lr_max --lambda lambda --min_sub_batch_size batchsize
  • model_template.py: 模型架构,例如 taiyaki 模板
  • pretained_model.checkpoint: 将被增量学习的模型,例如 taiyaki 预训练模型
  • input.hdf5: 由 taiyaki 工作流程生成的训练数据集
  • –device: 我们建议使用 GPU 进行增量学习训练
  • –output: 输出字典的路径
  • –save_every epochs: 每 epochs 次迭代保存检查点
  • –niteration niterations: 增量学习中的迭代次数
  • –lr_max lr_max: AdamW 优化器中的默认学习率
  • –lambda lambda: 使用超参数 λ 平衡 L C T C L_{CTC} LCTC L
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值