通义模型Prompt调优的实用技巧

1.

目录

1. prompt工程简介

2. Prompt设计

2.1 Prompt主要构成要素

2.2 Prompt编写策略

策略一:对较难被准确遵循的复杂规则可拆分为多条规则,有助于提升效果

策略二:适当冗余关键信息

策略三:使用分隔符给Prompt分段

策略四:增加学习示例

策略五:编写清晰地说明 - 指定任务所需的步骤

策略六:让大模型反思自己的推理过程

策略七:语音场景下的prompt要点

策略八:判断型的任务,建议先给依据,再出结论


prompt工程简介

Prompt 是用户与大语言模型交互的起始点,它告诉模型用户的意图,并且期望模型能以有意义且相关的方式回应。当我们希望大语言模型去完成一些较为复杂的任务时,Prompt的质量决定了大语言模型能否有好的回复。通过精心设计的prompt,我们能够有效地指引大型语言模型(LLM),深化其对用户需求的理解层次,从而激发更加精准且实用的回应生成。

2. Prompt设计

2.1 Prompt主要构成要素

prompt主要包含以下要素:

  1. 引导语或指示语:告诉模型你希望它执行哪种类型任务,比如回答问题、提出建议、创作文本等。
  2. 上下文信息:提供足够的背景信息,以便模型能够更好地理解和处理请求。上下文信息可能包括具体情景、相关数据、历史对话信息等内容。
  3. 任务描述:明确地描述你期望模型执行的任务。它可以是一个问题、一个命令性语句或者是一个场景描述。
  4. 输出格式指示:如果你对输出结果有特定的格式要求,应在prompt中说明。比如,你可以指定输出应该是列表形式、一段连贯的文本还是一系列步骤等。
  5. 限制条件:设置一些约束条件,指导模型避免某些类型的回答或者引导模型产生特定风格的内容。例如,可以限制回答的字数、要求避免使用专业术语等。
  6. 样例输出:提供一个或多个例子可以帮助LLM理解所期望的输出类型和质量。
  7. 结束语:如果有必要,可以使用结束语来标示prompt的结束,尤其是在连续的对话或者交互中。

这些要素并不是每个prompt都必须包含的,但根据特定的需求和上下文,合适地结合这些要素可以提高LLM生成的文本质量和相关性。

2.2 Prompt编写策略

策略一:对较难被准确遵循的复杂规则可拆分为多条规则,有助于提升效果

原prompt规则描述:

对于推销结果的判定,如果提及了【支付、办手续、签字、合同】则是“成交”,如果提及了【再看、考虑、不要、再联系、不需要、放弃、先不】则是“未成交”,其他情况识为“无法识别是否成交”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值