矩阵可逆的充要条件及证明

1. 定理

A A A n n n阶矩阵,则如下命题等价

  1. A A A是可逆的
  2. A X = 0 AX=0 AX=0只有0解
  3. A A A I I I行等价
  4. A A A可表示为有限个初等矩阵的乘积

2. 证明

2.1 证明: 1 → 2 1\rightarrow2 12

已知 A A A可逆,证明 A X = 0 AX=0 AX=0只有0解。

证明:
∵   A \because\ A  A可逆
∴   A − 1 \therefore\ A^-1  A1存在
⇒   A − 1 A X = A − 1 0 \Rightarrow\ A^{-1}AX=A^{-1}0  A1AX=A10
⇒   X = 0 \Rightarrow\ X=0  X=0

证毕。

2.2 证明: 2 → 3 2\rightarrow3 23

已知 A X = 0 AX=0 AX=0只有0解,证明 A A A I I I行等价

证明:
∵   A X = 0 \because\ AX=0  AX=0只有0解
⇒   A \Rightarrow\ A  A必定可以化成行阶梯型矩阵
⇒   A \Rightarrow\ A  A的对角元不为0
⇒   A \Rightarrow\ A  A必定可以化为 I I I矩阵

证毕。

2.3 3 → 4 3\rightarrow4 34

已知 A A A I I I行等价,证明 A A A可表示为有限个初等矩阵的乘积

证明:
∵   A \because\ A  A I I I行等价
∴ \therefore 可以通过若干初等变换 E 1 E 2 . . . E k E_1E_2...E_k E1E2...Ek,使得: E 1 E 2 . . . . . . E k A = I E_1E_2......E_kA=I E1E2......EkA=I
∵ \because 初等矩阵都是必定是可逆矩阵
∴ \therefore 存在 E k − 1 . . . . . . E 2 − 1 E 1 − 1 ( E 1 E 2 . . . . . . E k A ) = E k − 1 . . . . . . E 2 − 1 I E_k^{-1}......E_2^{-1}E_1^{-1} (E_1E_2......E_kA)=E_k^{-1}......E_2^{-1}I Ek1......E21E11(E1E2......EkA)=Ek1......E21I

⇒   ( E k − 1 . . . . . . E 2 − 1 E 1 − 1 E 1 E 2 . . . . . . E k ) A = E k − 1 . . . . . . E 2 − 1 \Rightarrow\ (E_k^{-1}......E_2^{-1}E_1^{-1}E_1E_2......E_k)A=E_k^{-1}......E_2^{-1}  (Ek1......E21E11E1E2......Ek)A=Ek1......E21

⇒   A = E k − 1 . . . . . . E 2 − 1 \Rightarrow\ A=E_k^{-1}......E_2^{-1}  A=Ek1......E21

证毕。

2.3 4 → 1 4\rightarrow1 41

已知 A A A可表示为有限个初等矩阵的乘积,证明 A A A是可逆的。

证明:
∵   A = E 1 E 2 . . . . . . E k \because\ A=E_1E_2......E_k  A=E1E2......Ek,且 E 1 , E 2 , . . . E k E_1,E_2,...E_k E1,E2,...Ek都是初等矩阵
∴   E 1 − 1 , E 2 − 1 , . . . E k − 1 \therefore\ E_1^{-1},E_2^{-1},...E_k^{-1}  E11,E21,...Ek1存在
⇒   E k − 1 . . . . . . E 2 − 1 E 1 − 1 A = E k − 1 . . . . . . E 2 − 1 E 1 − 1 E 1 E 2 . . . . . . E k \Rightarrow\ E_k^{-1}......E_2^{-1}E_1^{-1}A=E_k^{-1}......E_2^{-1}E_1^{-1}E_1E_2......E_k  Ek1......E21E11A=Ek1......E21E11E1E2......Ek
⇒   E k − 1 . . . . . . E 2 − 1 E 1 − 1 A = I \Rightarrow\ E_k^{-1}......E_2^{-1}E_1^{-1}A=I  Ek1......E21E11A=I
⇒   A − 1 = E k − 1 . . . . . . E 2 − 1 E 1 − 1 \Rightarrow\ A^{-1}=E_k^{-1}......E_2^{-1}E_1^{-1}  A1=Ek1......E21E11

证毕。

2.4 总结

∵   1 ⇒ 2 ,   2 ⇒ 3 ,   3 ⇒ 4 ,   4 ⇒ 1 \because\ 1\Rightarrow2,\ 2\Rightarrow3,\ 3\Rightarrow4,\ 4\Rightarrow1  12, 23, 34, 41
∴ \therefore 标题 1 1 1中的所有命题等价。

3. 扩展

A A A n n n阶矩阵,则 A X = b AX=b AX=b有唯一解的充要条件是 A A A可逆。试证明。

证明:

  1. 充分性
    ∵   A \because\ A  A可逆
    ∴   A − 1 \therefore\ A^{-1}  A1存在
    ⇒   A − 1 A X = A − 1 b \Rightarrow\ A^{-1}AX=A^{-1}b  A1AX=A1b
    ⇒   X = A − 1 b \Rightarrow\ X=A^{-1}b  X=A1b
    充分性证毕。
  2. 必要性
    假设 A X = b AX=b AX=b有唯一解,但 A A A不可逆。
    根据标题 1 1 1中定理, ∵   A \because\ A  A可逆 ⇒   A X = 0 \Rightarrow\ AX=0  AX=0只有0解
    ∴   A \therefore\ A  A不可逆 ⇒   A X = 0 \Rightarrow\ AX=0  AX=0有非0解
    则设存在 A X = 0 AX=0 AX=0的一个非0解 Z Z Z,使得 A Z = 0 AZ=0 AZ=0
    因此 A X + A Z = b + 0 AX+AZ=b+0 AX+AZ=b+0
    ⇒   A ( X + Z ) = b \Rightarrow\ A(X+Z)=b  A(X+Z)=b
    ∵   Z \because\ Z  Z为非0解
    ∴   X + Z ≠   X \therefore\ X+Z\neq\ X  X+Z= X
    这与 A X = b AX=b AX=b有唯一解矛盾,因此:如果 A X = b AX=b AX=b有唯一解, A A A必然可逆。

证毕。

  • 7
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
矩阵相似的充要条件是它们有相同的特征值和相同的特征向量。具体来说,设 A 和 B 是 n 阶矩阵,如果存在一个可逆矩阵 P,使得 P^{-1}AP = B,则称 A 和 B 是相似的。 矩阵相似具有以下性质: 1. 相似矩阵具有相同的特征值。设 A 和 B 是相似矩阵,它们有相同的特征值 λ_i。这是因为 P^{-1}AP 和 B 有相同的特征值,而 P^{-1}AP 和 B 是相似的,所以 A 和 B 有相同的特征值。 2. 相似矩阵具有相同的特征向量。设 A 和 B 是相似矩阵,它们有相同的特征值 λ_i 和对应的特征向量 v_i。这是因为 P^{-1}AP 和 B 有相同的特征向量,而 P^{-1}AP 和 B 是相似的,所以 A 和 B 有相同的特征向量。 3. 相似矩阵具有相同的迹。设 A 和 B 是相似矩阵,则它们的迹 Tr(A) 和 Tr(B) 相等。这是因为 Tr(A) = Tr(P^{-1}AP) = Tr(P(P^{-1}AP)) = Tr(PP^{-1}AP) = Tr(A)。 4. 相似矩阵具有相同的行列式。设 A 和 B 是相似矩阵,则它们的行列式 det(A) 和 det(B) 相等。这是因为 det(A) = det(P^{-1}AP) = det(P^{-1})det(A)det(P) = det(A)。 5. 相似矩阵具有相同的秩。设 A 和 B 是相似矩阵,则它们的秩 rank(A) 和 rank(B) 相等。这是因为矩阵相似不改变矩阵的秩。 需要注意的是,相似矩阵是一个等价关系,即满足反身性、对称性和传递性。也就是说,对于任意矩阵 A,它和自身是相似的;如果 A 和 B 是相似的,则 B 和 A 也是相似的;如果 A 和 B 是相似的,B 和 C 是相似的,则 A 和 C 也是相似的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值