目录
1. 概率的基本要素
为了定义集合上的概率,我们需要一些基本元素:
样本空间:随机实验的所有结果的集合(所有样本点的集合)。在这里,每个结果(样本点)可以被认为是实验结束时现实世界状态的完整描述。
事件集(事件空间) F:事件,事件A是的子集,即 是一个实验可能结果的集合(包含一些样本点)。
F需要满足以下三个条件:
概率(度量)P:函数P是一个(事件集到实数集的映射),满足:
以上三条性质被称为概率公理。
- 例子
- 性质
- 条件概率与独立性
2. 随机变量
考虑一个实验,我们翻转 10 枚硬币,我们想知道正面硬币的数量。这里,样本空间的元素是长度为 10 的序列。例如,我们可能有:
然而,在实践中,我们通常不关心获得任何特定正反序列的概率。相反,我们通常关心结果的实值函数,比如我们 10 次投掷中出现的正面数。在某些技术条件下,这些函数被称为随机变量。
更正式地说,随机变量X是一个(样本空间/样本集到实数集的映射)的函数。通常,我们将使用大写字母或更简单的X(其中隐含对随机结果的依赖)来表示随机变量。我们将使用小写字母x来表示随机变量的值。
- 例子
在我们上面的实验中,假设