数学基础 | (3) cs229概率论基础

目录

1. 概率的基本要素

2. 随机变量

3. 两个随机变量

4. 多个随机变量


1. 概率的基本要素

为了定义集合上的概率,我们需要一些基本元素:

样本空间\Omega:随机实验的所有结果的集合(所有样本点的集合)。在这里,每个结果(样本点)w \in \Omega可以被认为是实验结束时现实世界状态的完整描述。

事件集(事件空间) F:事件A \in F,事件A是\Omega的子集,即A \subseteq \Omega 是一个实验可能结果的集合(包含一些样本点)。

F需要满足以下三个条件:

概率(度量)P:函数P是一个F \rightarrow R(事件集到实数集的映射),满足:

以上三条性质被称为概率公理

  • 例子

  • 性质

  • 条件概率与独立性

 

2. 随机变量

考虑一个实验,我们翻转 10 枚硬币,我们想知道正面硬币的数量。这里,样本空间\Omega的元素是长度为 10 的序列。例如,我们可能有:

然而,在实践中,我们通常不关心获得任何特定正反序列的概率。相反,我们通常关心结果的实值函数,比如我们 10 次投掷中出现的正面数。在某些技术条件下,这些函数被称为随机变量

更正式地说,随机变量X是一个\Omega\rightarrow R(样本空间/样本集到实数集的映射)的函数。通常,我们将使用大写字母X(\omega)或更简单的X(其中隐含对随机结果\omega的依赖)来表示随机变量。我们将使用小写字母x来表示随机变量的值。

  • 例子

在我们上面的实验中,假设

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值