数学基础 | (7) 特征值,特征向量与SVD奇异值分解

原文地址

本篇博客将介绍线性代数里比较重要的概念:特征值,特征向量以及SVD奇异值分解。

向量

回顾线性代数中,含有n个元素的向量可以表示为:
在这里插入图片描述
一般默认向量为列向量,也就是n行1列的矩阵,行向量表示为x的转置即** x T x^T xT**

特征值和特征向量

当维度为n*n方阵A、n维向量x和实数 λ满足下式时:
在这里插入图片描述
上式可以看成将矩阵 A 作用在向量 x 上,只对该向量的长度进行变换,此时λ 为矩阵 A 的特征值,x 为对应的特征向量(从几何角度看左乘一个矩阵可以看成一个空间变换)。

将上式变换一下可得:
在这里插入图片描述

当且仅当矩阵KaTeX parse error: Undefined control sequence: \lamba at position 2: (\̲l̲a̲m̲b̲a̲ ̲I-A)奇异矩阵时才存在非零解 x ,令其行列式为0,可以得到 λ 的多项式,求得特征值,再根据特征值即可求出相应的特征向量.

令矩阵 A 的第 i 个特征值为 λ i \lambda_i λi, 对应的特征向量为 x i x_i xi, 所有特征向量(列向量)构成的矩阵为 X ,若X可逆,则A可对角化表示为:
在这里插入图片描述
其中 Λ 为对应特征值组成的对角矩阵.

特别的若A为对称矩阵( A = A T A=A^T A=AT),则A的特征值均为实数,其特征向量可化为(正则)正交特征向量,即X为正交矩阵( X − 1 = X T X^{-1}=X^T X1=XT),用U表示,则矩阵A可表示为:
在这里插入图片描述

SVD奇异值分解

若A为mn矩阵,则存在mm的正交矩阵U、nn的正交矩阵V和mn的对角矩阵D满足:
在这里插入图片描述
其中U为左奇异矩阵,其列向量为 A A T AA^T AAT的特征向量;V为右奇异矩阵,其列向量为 A T A A^TA ATA的特征向量;矩阵D中对角线元素为A的奇异值,为 A T A A^TA ATA的特征值的平方根. 因为一个矩阵乘以它的转置为对称矩阵,必能正交对角化,因此任意矩阵均能奇异值分解.

SVD应用

SVD一个常见的应用就是降维,如对于图像数据矩阵A进行SVD,取前k大的奇异值,U和V都取前k个向量,再恢复到原图像大小,k取值合理的情况下可以与原图几乎一样,这样就实现了对图像的压缩.

可以发现和PCA主成分分析很相似。在PCA中我们先计算协方差矩阵,再求出前k大特征值对应的特征向量作为主成分,对数据进行降维。

当计算协方差矩阵时,我们需要计算 A T A A^TA ATA(A为样本特征矩阵,维数为n*p,n为样本数,p为特征个数,且A已进行取均值化(对所有样本的特征向量求均值向量,每个样本的特征向量减去均值向量)),计算SVD时也有这个,由此可以得到PCA的另一种解法:通过对A进行SVD分解计算右奇异矩阵V,V中列向量即为PCA所需的特征向量。这种方法更为方便,sklearn中的PCA就是通过SVD来实现的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值