JAVA算法:走方格的最小代价(走方格问题变形)

本文探讨了如何解决走方格问题的变形,即找到从(0,0)到(m,n)的最小成本路径。算法分析了允许的移动方向(向下、向右和斜向下)并提出了最优子结构和重叠子问题的概念。通过动态规划的方法,实现了求解最小成本路径的高效算法,避免了指数级的时间复杂度,最后展示了正确的运行结果8。
摘要由CSDN通过智能技术生成

JAVA算法:走方格的最小代价(走方格问题变形)

给定一个矩阵(二维数组)和一个位置(m,n)。要求编写一个算法,返回从(0,0)到(m,n)的最小成本路径的成本。矩阵的每个单元格表示遍历该单元格的成本。到达路径的总成本(m,n)是该路径上所有成本(包括源和目标)的总和。在矩阵中移动时,只能从给定单元格向下、向右和斜向下方向(三个方向)遍历单元格,即从给定单元格(i,j)遍历单元格(i+1,j)、(i,j+1)和(i+1,j+1)。您可以假设所有成本都是正整数。

例如,在下图中,到(2,2)的最小成本路径是什么?

1

2

3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值