假定我们有点 P 0 P_0 P0和 P 1 P_1 P1,以及平面 X X X(以齐次坐标表示),那么如果我们要求交点 P P P,我们可以将 P 0 P 1 P_0P_1 P0P1上任意一点 P P P代入平面 X X X的方程,即
P = ( 1 − t ) P 0 + t P 1 , 0 ≤ t ≤ 1 X ⋅ P = 0 ( 1 − t ) X ⋅ P 0 + t X ⋅ P 1 = 0 P = (1-t) P_0+tP_1,\ 0\le t \le 1 \\ X\cdot P = 0 \\ (1-t) X \cdot P_0 + tX\cdot P_1 = 0 P=(1−t)P0+tP1, 0≤t≤1X⋅P=0(1−t)X⋅P0+tX⋅P1=0
其中 X ⋅ P i X \cdot P_i X⋅Pi为 P i P_i Pi到 X X X的有符号距离。可以看出,这里我们只需要知道线段的2个端点到平面的有符号距离,即可以计算出交点。
联想到在vertex shader中,我们可以通过写入gl_ClipDistance[]
来自定义裁剪平面,这里我们无需给出裁剪平面的齐次形式,而是仅给出有符号距离,就可以让OpenGL知道我们定义的平面。