线性代数之——傅里叶级数

这部分我们从有限维扩展到无限维,在无限维空间中线性代数依然有效。首先,我们来回顾一下,我们一开始是以向量、点积和线性组合进行展开的。现在我们开始将这些基本的概念转化到无限维的情况,然后再继续深入探索。

一个向量有无限多的元素是什么意思呢?有两种答案,都非常好。

  • 向量变成 v = ( v 1 , v 2 , v 3 , ⋯   ) \boldsymbol v=(v_1,v_2,v_3,\cdots) v=(v1,v2,v3,),比如 ( 1 , 1 2 , 1 4 , ⋯   ) (1,\frac{1}{2},\frac{1}{4},\cdots) (1,21,41,)
  • 向量变成一个函数 f ( x ) f(x) f(x),比如 s i n   x sin \space x sin x

很自然,两个无限维向量的点积是一个无限维的级数:

但是这带来了一个新问题,这个无限的和加起来会是一个有限的数字吗?这个级数收敛吗?这是有限和无限第一个并且是最大的差异。如果 v = w = ( 1 , 1 , 1 , ⋯   ) \boldsymbol v=\boldsymbol w=(1,1,1,\cdots) v=w=(1,1,1,),和肯定不收敛,这时候 v ⋅ w = v ⋅ v = ∣ ∣ v ∣ ∣ 2 \boldsymbol v\cdot \boldsymbol w = \boldsymbol v \cdot \boldsymbol v=||v||^2 vw=vv=v2,也就是说向量的长度为无穷,我们不想要这样的向量。因为我们可以制定规则,所以我们不用包含它,这里我们只允许长度有限的向量。

向量 v = ( v 1 , v 2 , v 3 , ⋯   ) \boldsymbol v=(v_1,v_2,v_3,\cdots) v=(v1,v2,v3,) 位于我们的有限维希尔伯特(Hilbert)空间当且仅当它的长度是有限的。

向量 v = ( 1 , 1 2 , 1 4 , ⋯   ) \boldsymbol v=(1,\frac{1}{2},\frac{1}{4},\cdots) v=(1,21,41,) 位于希尔伯特空间,因为它的长度为 2 / 3 2/\sqrt{3} 2/3

如果两个向量的长度都是有限的,那么我们可以放心地进行点乘,施瓦茨不等式依然成立,而且它们之间夹角余弦的绝对值始终小于 1。

现在我们来看函数,它们可以看作是“向量”,定义在 0 ⩽ x ⩽ 2 π 0\leqslant x \leqslant 2\pi 0x2π 上的函数空间 f ( x ) , g ( x ) , h ( x ) , ⋯ f(x),g(x),h(x),\cdots f(x),g(x),h(x), 肯定比 R n \boldsymbol R^n Rn 大。 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 的点积是什么呢? f ( x ) f(x) f(x) 的长度是多少呢?连续情况下的关键是:用积分替代求和

函数的定义区间可以任意改变,这里是为了使用三角函数才选择的 0 ⩽ x ⩽ 2 π 0\leqslant x \leqslant 2\pi 0x2π

更重要的是, s i n   x sin\space x sin x c o s   x cos\space x cos x 在函数空间是正交的。

这种正交性不仅仅存在于这两个函数之间, c o s   0 x = 1 , s i n   x , c o s   x , s i n   2 x , c o s   2 x , ⋯ cos\space 0x=1,sin\space x,cos\space x,sin\space 2x,cos\space 2x,\cdots cos 0x=1,sin x,cos x,sin 2x,cos 2x,上述列表中的每一个函数都和其余函数正交

一个函数的傅里叶级数就是将其展开成正弦和余弦的形式。

这些正弦和余弦基是正交的,函数空间中的向量则可以表示为它们的线性组合。这些基是周期函数,周期为 2 π 2\pi 2π。一个典型函数的长度可以这样计算:

第一行平方展开后,类似 s i n   x ∗ c o s   x sin\space x*cos\space x sin xcos x 的项积分后都为零,只留下了自身的平方项。如果将这些基除以它们的长度,那么我们就得到了一组标准正交基。

然后,用一组系数 A 0 , A 1 , B 1 , A 2 , ⋯ A_0,A_1,B_1,A_2,\cdots A0,A1,B1,A2, 对这些基进行组合我们就可以得到 F ( x ) F(x) F(x),此时再求长度我们就可以丢掉那些 π \pi π 2 π 2\pi 2π 了。

函数有有限的长度如果这些系数都是有限的话,傅里叶级数给出了函数空间和有限维西尔伯特空间的一个完美匹配。

那给定一个函数,我们怎么知道它的傅里叶系数呢?

比如我们想知道 a 1 a_1 a1,那么我们可以对上式两边同时乘以 c o s   x cos\space x cos x,然后在 [ 0 , 2 π ] [0, 2\pi] [0,2π] 上进行积分。由于正交性,其余项的积分都变成了零,只留下了 a 1 a_1 a1 对应的项。

同理,我们可以求得所有的系数。

在有限维情况下,如果我们拥有一组标准正交基,那么我们可以很容易地计算出系数,而傅里叶级数就像是一个有着无穷列的正交矩阵。

获取更多精彩,请关注「seniusen」!

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值