近年来,随着国内经济增速放缓、新冠疫情爆发反复等内外部环境的剧烈影响,国内银行业也在发生着显而易见的变化,整体从高利率时代过渡进入到中低利率时代。与此同时,银行个人客户的数字化程度达到历史新高,在线时间大幅提升、使用场景更加丰富,依托数字化能力驱动零售业务增长已经成为越来越多银行的发展共识,各家银行的经营思路也逐步从过往追求增量获客转变为以挖掘存量、深耕客群价值为主。
从具体做法来看,银行普遍采取的运营动作是,以客户为中心,整合多源数据构建标签体系,并在此基础之上进行零售客群分析、洞察、运营与持续服务等一系列操作。这其中如何基于业务现状精准定义细分客群,如何运用平台工具高效构建与沉淀客群策略,以及标签体系如何搭建支撑业务需求,成为做好零售业务数字化运营的关键。
一、银行零售数字化运营的三大阶段
基于神策数据对整体行业趋势的洞察与研究,银行业发展主要经历了以下三个阶段:
1、基础标签框架搭建 & 数据基础能力建设
该阶段以腰部以下农商行为主,主要处于数据层系统能力建设环节,大多以科技部门主导建设数据集市、标签系统等平台,形成对行内已有数据的初步整合沉淀,产出业内通用框架下的指标型基础标签,同时因为应用层平台能力的欠缺,构建的标签对于业务的直接支撑作用比较有限。
2、业务标签体系搭建 & 标签管理能力建设
该阶段主要存在于头部农商行以及大部分城商行。业务层面来看,该阶段银行开始在标签基础能力之上围绕具体运营场景搭建业务应用类衍生标签;在系统层面则开始关注标签本身的生命周期管理能力,优化标签应用效率。
3、客群策略沉淀 & 数据治理机制建设
该阶段主要存在于头部城商行以及股份制银行,通过业务在运营实践中的不断打磨优化,已经能够基于运营策略体系沉淀出场景化的客群策略模版,在客群常态化经营以及总分支行联动营销机制中快速复用;而在数据层,该阶段银行会进一步认知到基础数据质量对于业务的巨大影响,开始在数据治理方面投入更多精力与资源。
二、银行业精细化运营面临的四个困境
在整个数据驱动精细化运营的建设路径中,银行并不是一帆风顺的,标签该怎么建,建好了该怎么用,用了为什么没效果等都是经常出现的问题,通过对这些问题的思考与研究,神策数据认为有 4 个原因导致了银行在精细化运营过程中存在以上困局:
1、认知偏差:业务运营缺的是客群策略而不是标签体系
我们假设一个具体场景,在手机银行渠道活跃客户中,定位理财潜在客户进行理财产品推荐,从策略制定的角度我们要明确目标客群,首先确定客群筛选维度:比如 App 活跃、存款余额、产品浏览行为、触达渠道偏好;其次是定义各个维度下的赋值逻辑:App 活跃的 30 天内大于 3 次、活期存款大于 5W、过去 30 天内浏览理财专区大于等于 1 次、触达渠道偏好为 App 推送;最后,基于现有标签筛选出具体客群包进行营销。
所以,从业务运用的角度,真正需要的是客群策略的制定,如何确定筛选维度以及如何选择取值范围,这些都是业务运营层面真正解决问题的关键,而不仅仅只是看我们现在有没有对应的标签。
而在实际建设过程中,我们往往会优先考量标签体系而忽略了客群策略的制定,认为把标签体系大而全地建出来了自然业务就能用起来,这是一个认知偏差。
2、职责偏差:客群策略本质是个业务活,而不是数据活