微调VisualGLM-6B的笔记

1.激活虚拟环境
conda activate glm

2.设置模型路径

export SAT_HOME=/home/root1/data/glm/VisualGLM-6B/THUDM/

3.微调模型

这里我使用lora微调,之前使用qlora再加载微调后的数据时报错,暂时没解决,如果解决了再更新到后面

CUDA_VISIBLE_DEVICES=0,1,2 bash finetune/finetune_visualglm.sh --quant 4

在这里插入图片描述
在这里插入图片描述

显卡占用
在这里插入图片描述
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/1d5012a3784f4fcf895eb89383c9eba0.png

在这里插入图片描述
这是显卡占用,我用了三张卡,一张卡大概占15G

如果我只有4号和5号卡空闲的话,如果还是使用CUDA_VISIBLE_DEVICES=4,5可能会报错:
ValueError: No slot '4' specified on host 'localhost'

解决办法:参考指定卡训练下面这样设置:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.加载微调后的模型

CUDA_VISIBLE_DEVICES=2 python cli_demo.py --from_pretrained 'checkpoints/finetune-visualglm-6b-07-28-12-41' --quant 4

在这里插入图片描述

在这里插入图片描述
显卡占用

4.使用web_demo.py启动web端(加载微调之前的模型)

CUDA_VISIBLE_DEVICES=2 python web_demo.py --quant 4

在这里插入图片描述
因为使用的远程服务器,无法在本地直接打开web端网址,所以借助visdom在本地打开(下列安装操作已完成,不需重复安装)

4.1 启动visdom.server
python -m visdom.server

一切正常会输出下面:
在这里插入图片描述

4.2 注意,在本地电脑!!!终端输入:

不要在后面加端口号

ssh -L 8080:127.0.0.1:7860 root1@xxx.xxx.xxx.xxx
ssh -L [本地端口]:[远程地址]:[远程端口] [用户名]@[远程服务器地址]

在这里插入图片描述

弹出输入服务器密码的提示,输入密码,回车,如上图所示。

4.3 在本机打开网页
http://127.0.0.1:8080/

我们先使用官方给的微调数据进行测试
在这里插入图片描述
此时服务器端也会出现:
在这里插入图片描述
上述这个是加载的微调之前的模型,下面是加载我们微调之后的模型

5.使用web_demo.py启动web端(加载微调之后的模型)

根据微调后的模型怎么放入web_demo中进行使用啊?我们修改web_demo.py和/home/root1/data/glm/VisualGLM-6B/model/infer_util.py
在这里插入图片描述
和加载微调之前的模型一样,输入如下代码:

CUDA_VISIBLE_DEVICES=2 python web_demo.py --quant 4

在这里插入图片描述
如何在本机打开web端,可以上述内容,即加载微调后的模型进行推理
在这里插入图片描述

持续更新…
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值