概率图模型总结

本文详细介绍了概率图模型,包括有向图模型如贝叶斯网络、朴素贝叶斯和隐马尔可夫模型,以及无向图模型如对数线性模型和条件随机场。还涵盖了推断方法如变量消除和信念传播,以及学习问题中的参数估计。概率图模型是理解和表示复杂概率模型的强大工具。
摘要由CSDN通过智能技术生成

简介

概率图模型(Probabilistic Graphical Model,PGM),简称图模型(Graphical Model,GM),是指一种用图结构来描述多元随机变量之间条件独立关系的概率模型,从而给研究高维空间中的概率模型带来了很大的便捷性。

p ( x ) = P ( X = x ) = p ( x 1 ) p ( x 2 ∣ x 1 ) p ( x 3 ∣ x 1 , x 2 ) , . . . , p ( x K ∣ x 1 , . . . , x K − 1 ) p(x)=P(X=x)=p(x_1)p(x_2|x_1)p(x_3|x_1,x_2),...,p(x_K|x_1, ..., x_{K-1}) p(x)=P(X=x)=p(x1)p(x2x1)p(x3x1,x2),...,p(xKx1,...,xK1)

图模型的基本问题

  1. 表示问题:对于一个概率模型,如何通过图结构来描述变量之间的依赖关系;
  2. 推断问题:在已知部分变量的时候,计算其他变量的后验概率分布;
  3. 学习问题:图模型的学习包括图结构的学习和参数的学习。

模型表示

常见的概率图模型可以分为两类:有向图模型和无向图模型。

有向图模型

有向图模型也称为贝叶斯网络或者信念网络,表示为 G ( V , E ) G(V, E) G(V,E),节点集合 V = { X 1 , X 2 , . . . , X K } V=\{X_1, X_2, ..., X_K\} V={ X1,X2,...,XK},表示K个随机变量,可以使可观察的变量,隐变量或者是未知参数,E为边的集合,每条边表示两个变量之间的因果关系

常见的有向图模型

sigmoid信念网络

sigmoid信念网络中的变量取值为{0, 1},对于变量 X k X_k Xk和它的父节点集合 π k \pi_k πk,其条件概率分布为:
P ( X k = 1 ∣ x π k , θ ) = σ ( θ 0 + ∑ x i ∈ x π k

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值