回归算法|长短期记忆网络LSTM及其优化实现

本期文章将介绍LSTM的原理及其优化实现

在这里插入图片描述

在这里插入图片描述

序列数据有一个特点,即“没有曾经的过去则不存在当前的现状”,这类数据以时间为纽带,将无数个历史事件串联,构成了当前状态,这种时间构筑起来的事件前后依赖关系称其为时间依赖,利用这类依赖关系进行建模是对其进行学习的关键。

近年来,越来越多的神经网络模型被用于序列数据的预测,如股票、电力负荷、风电功率、心电信号等场景,并取得了不错的效果。

通常,神经网络模型可以分为两类:

一类是以BP神经网络为代表的神经网络,这类网络结构简单,但容易出现陷入局部极值、过拟合等问题,并且其并没有对于依赖关系进行利用;

另一类是更深层次、更高效的深度神经网络模型,如CNN、RNN、LSTM,这类网络是较为前沿和高效的预测模型,其能够拟合输入变量间的非线性复杂关系,并且对于RNN和LSTM来说,其能够克服传统神经网络没有记忆功能的问题,可以有效的根据历史信息进行学习和预测。相对于RNN,LSTM能避免RNN在长序列数据中出现的梯度消失或爆炸的问题,是最为流行的RNN(LSTM是在RNN基础上的改进),因此LSTM在序列数据学习中得到了广泛应用。

LSTM同样面临着隐含层神经元个数、学习率、迭代次数等超参数设置的问题,这些参数都将影响LSTM的预测精度,利用优化算法进行超参数的寻优比经验法更为科学高效,因此本文将详细介绍LSTM模型的原理及其优化实现。

00 目录

1 LSTM模型原理

2 优化算法及其改进概述

3 GWO-LSTM预测模型

4 代码目录

5 实验结果

6 源码获取

01 LSTM神经网络模型[1]

长短时记忆神经网络(LSTM)是Sepp Hochreiter和Jurgen Schmidhuber在1997年对递归神经网络(RNN)进行改进的算法。它旨在解决递归神经网络(RNN)产生的梯度消失问题,在长距离依赖任务中的表现也远好于RNN。LSTM模型的工作方式和RNN基本相同,但是LSTM模型实现了更为复杂的内部处理单元来处理上下文信息的存储与更新。

Hochreiter 等人主要引入了记忆单元和门控单元实现对历史信息和长期状态的保存,通过门控逻辑来控制信息的流动。后来Graves等人对LSTM单元进行了完善,引入了遗忘门,使得LSTM模型能够学习连续任务,并能对内部状态进行重置。

LSTM主要由三个门控逻辑(输入、遗忘和输出)实现。门控可以看作一层全连接层,LSTM对信息的存储和更新正是由这些门控来实现的。更具体地说,门控由Sigmoid函数和点乘运算实现。
在这里插入图片描述

这里分别使用i、f、o来表示输入门、遗忘门和输出门,O表示对应元素相乘,W和b分别表示网络的权重矩阵与偏置向量。在时间步为t时,LSTM隐含层的输入与输出向量分别为x,和h,,记忆单元为c,,输入门用于控制网络当前输入数据x,流入记忆单元的多少,即有多少可以保存到c,,其值为:

在这里插入图片描述

遗忘门是LSTM 的关键组成部分,可以控制哪些信息要保留哪些要遗忘,并且以某种方式避免当梯度随时间反向传播时引发的梯度消失和爆炸问题。遗忘门可以决定历史信息中的哪些信息会被丢弃,即判断上一时刻记忆单元ct-1中的信息对当前记忆单元ct的影响程度。
在这里插入图片描述

输出门控制记忆单元c,对当前输出值h,的影响,即记忆单元中的哪一部分会在时间步t输出。输出门的值及隐含层的输出值可表示为:
在这里插入图片描述

02 优化算法及其改进概述

前面的文章中作者介绍了许多种优化算法及其改进算法,

这里我们以灰狼优化算法为例,其他算法同理。作者的代码很多都是标准化的,其他文章里的算法替换起来也很容易。

03 GWO-LSTM预测模型

超参数在一定程度上会影响LSTM网络的拟合精度,因此必须获得适合不同特征数据的最佳超参数值。然而,目前还没有成熟的理论来获得合适的超参数值。因此,本文采用灰狼优化算法,得到LSTM的最佳网络超参数值,包括初始学习率、隐含层神经元数、批次大小和训练迭代次数,即[lr,L1,L2,Batch,k]。其中增加隐藏层数可提高模型的非线性拟合能力,但同时也使模型更复杂,预测时间随之增加,甚至引发过拟合问题﹐因此本文将隐藏层数选择的范围控制在2层。优化参数的约束条件设置如下:在这里插入图片描述

以MSE作为适应度,GWO-LSTM预测模型的流程图如下:在这里插入图片描述

04 实验结果

以均方根差(Root Mean Square Error,RMSE) 、平均绝对百分误差( Mean Absolute Percentage Error,MAPE) 、平均绝对值误差 ( Mean Absolute Error,MAE) 和可决系数(coefficient of determination,R^2)作为序列数据拟合的评价标准。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

图中MSGWO为作者前面改进的灰狼优化算法

05 源码获取

代码注释详细,一般只需要替换数据集就行了,注意数据的行是样本,列是变量,源码提供3个版本

1.免费版

其主要是LSTM预测模型,包含Matlab和Python的程序,对于需要进行一些简单预测或者是想学习LSTM算法的同学足够了。

在这里插入图片描述

获取方式——GZH(KAU的云实验台)后台回复:LSTM

2.付费版1

主要是GWO优化LSTM的预测模型,这个只包含了Matlab程序,包括BP、LSTM、GWO-LSTM的预测对比。因为最近比较忙,Python就没有出,程序的注释详细,易于替换,卡卡之前介绍过的智能优化算法都可以进行替换。

在这里插入图片描述
在这里插入图片描述

获取方式——GZH后台回复:GWOLSTM

3.付费版2

主要是MSGWO优化LSTM的预测模型,这个只包含了Matlab程序,包括BP、LSTM、GWO-LSTM、MSGWO-LSTM的预测对比,也即在结果展示中的图片,其中MSGWO即为卡卡前面的融合多策略的改进灰狼优化算法的文章,程序的注释详细,这部分程序包含了函数测试、预测模型两个部分,可以用来发这类方向的文章,当然你也可以在卡卡算法的基础上再作创新改进,比如预测模型上可以再对预测误差做一个预测模型进行级联,或者对改进的灰狼算法再引入别的修改策略等等。

在这里插入图片描述

在这里插入图片描述

获取方式——GZH后台回复:MSGWOLSTM

[1]游皓麟著.Python预测之美:数据分析与算法实战[M] .电子工业出版社

另:如果有伙伴有待解决的优化问题(各种领域都可),可以发我,我会选择性的更新利用优化算法解决这些问题的文章。

如果这篇文章对你有帮助或启发,可以点击右下角的赞/在看(ง •̀_•́)ง(不点也行)。

  • 7
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 优化双向长短期记忆神经网络是提高其性能和效果的关键步骤。在Matlab中,可以通过以下几个方面进行优化。 首先,可以通过调整网络结构来提高性能。可以尝试增加网络的深度和宽度,引入更多的隐藏单元和层级。同时,也可以选择不同的激活函数和损失函数,尝试不同的组合以提高网络的逼近能力和泛化能力。 其次,可以通过正则化方法来减少过拟合。在双向长短期记忆神经网络中,可以使用Dropout技术,随机将一些隐藏单元的输出置为0,以避免过多依赖某些特征。此外,还可以使用L1和L2正则化来约束权重的大小,防止网络过于复杂。 另外,还可以通过适当的学习率调整来加速网络的训练。可以使用自适应学习率方法,如动量梯度下降法、Adagrad、RMSprop等,来调整每个参数的学习率。通过适当的学习率调整,可以加速网络的收敛速度,提高训练效率。 最后,数据预处理也是优化网络性能的关键。可以对输入数据进行归一化、标准化或者正则化处理,以消除数据之间的差异。此外,根据数据集的特点,可以使用数据增强方法,如旋转、平移、缩放等操作,以扩充训练数据集,提高网络的泛化能力。 通过以上的优化方法,可以有效提高双向长短期记忆神经网络的性能和效果。在实际应用中,可以根据具体问题的需求和数据集的特点选择适合的优化方法,并进行针对性的调整和修改,以获得更好的结果。 ### 回答2: 优化双向长短期记忆神经网络(Bidirectional Long Short-Term Memory, BiLSTM)是通过改进模型结构和参数调整来提高模型的性能和效率。在MATLAB中,可以采取以下几个方法进行优化。 首先,可以针对模型的结构进行优化。一种常见的方法是增加隐藏层的数量和神经元的数量。通过增加隐藏层和神经元的数量,可以增强模型的容量,提高其表达能力。此外,还可以尝试使用更深的网络结构,如堆叠多个LSTM层或将BiLSTM与其他类型的循环神经网络结合使用,以进一步提高模型的性能。 其次,可以通过调整训练参数来优化模型。常见的参数包括学习率、批次大小和训练迭代次数等。在训练过程中,可以尝试不同的学习率,并根据验证集的损失曲线选择最优的学习率。同时,通过合理设置批次大小,可以减小训练过程中的更新频率,提高训练效率。此外,可以使用一些常见的优化算法,如Adam、Adagrad等,来优化模型的收敛速度和性能。 此外,还可以采用一些常见的正则化技术来优化模型。例如,可以使用L1或L2正则化来约束模型的参数,防止模型过拟合。还可以使用Dropout技术,在训练过程中随机丢弃一部分神经元,以减少模型的复杂性,并提高模型的泛化能力。 最后,还可以尝试一些其他的技巧来优化模型。例如,可以使用更好的激活函数,如ReLU、Leaky ReLU等,来提高网络的非线性拟合能力。还可以尝试使用更好的初始化方法,并结合模型集成技术来进一步提高模型的性能。 通过以上这些优化策略,可以有效地提高双向长短期记忆神经网络在MATLAB中的性能和效率。 ### 回答3: 双向长短期记忆神经网络(Bi-Directional LSTM)是一种在自然语言处理任务中广泛应用的神经网络模型。在matlab中优化这种模型,可以采取以下几个步骤。 首先,需要准备好输入输出数据。输入数据可以是文本序列,如单词、句子或段落,而输出数据可以是对应的标签或下一个单词的预测。这些数据集可以通过导入文本文件或使用预处理工具进行整理。 其次,需要定义神经网络的结构。在matlab中,可以使用深度学习工具箱中的双向LSTM层来构建模型。这个层可以接受一个序列作为输入,并输出一个表示序列数据的隐藏状态向量。 在构建模型时,可以添加其他类型的层来进一步优化性能。例如,可以在LSTM层之前或之后添加一个嵌入层,将词汇表中的单词转换为向量表示。还可以添加一些全连接层或其他类型的循环神经网络层,以增加模型的复杂度和能力。 在定义好模型结构后,需要定义损失函数和优化器。损失函数可以根据具体任务选择,如交叉熵损失函数用于分类任务,均方差损失函数用于回归任务等。优化器可以选择Adam、SGD或RMSprop等常用的优化算法。 最后,可以进行模型的训练和评估。在训练过程中,可以将数据分为训练集、验证集和测试集,并使用训练集对模型进行迭代优化。在每个训练周期(epoch)结束后,可以使用验证集评估模型的性能,并根据需要进行调整。最后,在模型经过多个训练周期经过验证集的验证后,可以使用测试集评估模型的最终性能。 通过以上步骤,可以优化双向长短期记忆神经网络模型,以在自然语言处理任务中获得更好的性能。在matlab中,使用深度学习工具箱提供的相关函数和工具,可以方便地进行模型的构建、训练和评估。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值