ABC|人工蜂群优化算法原理、实现与优化算法有效性的思考(Matlab/Python)

27 篇文章 0 订阅
9 篇文章 0 订阅

文章来源于我的个人公众号:KAU的云实验台,主要更新智能优化算法的原理、应用、改进

人工蜂群算法(Artificial Bee Colony,ABC)是由土耳其学者Karaboga[1]于2005年提出,它是模拟蜜蜂的采蜜行为来解决生活中一些多维和多模的优化问题,目前在谷歌学术上的引用量9k+。
在这里插入图片描述

对于ABC算法的研究也呈逐年上涨的趋势。

在这里插入图片描述

​图源文献[8]

本文的内容之一即是介绍ABC算法的原理,并讨论其可利用与改进之处,最后给出其代码(Matlab/Python)实现。

本文的内容之二是KAU想聊聊优化算法的有效性的问题,可能很多朋友在应用一些最新的优化算法时都会有一个问题,明明在函数测试中算法的表现是最好的,为什么应用在实际问题中反而不理想,结合一些文献,KAU会简单探讨这个原因(本文仅对该现象原因作探讨,不评价算法好坏)。

下面是正文~

00 目录

1 人工蜂群算法(ABC)

2 优化算法有效性

3 代码目录

4 ABC算法性能

5 源码获取

01 人工蜂群算法(ABC)

1.1 人工蜂群算法原理

ABC算法自提出后,大量学者都针对其性能进行了分析比较[2-5],经总结,可得出其特点如下:

(1) 计算简单,但局部搜索能力弱。因为其每次产生的新解都是在父解基础上变化一个维度,因此其局部搜索能力弱,收敛较慢。

(2) 参数少。其只有一个控制参数limit。

(3) 探索能力好。探索蜂的存在使得算法可以跳出原有解集,保证群体的多样性,避免早熟。

下面具体讲ABC算法的理论:

ABC算法模拟蜂群采蜜过程,通过不同角色蜜蜂间的交流、转换和协作来实现群体智能。具体而言,人工蜂群由雇佣蜂、跟随蜂和侦查蜂三种角色分工组成,在协作过程中,雇佣蜂负责搜索蜜源并将蜜源信息反馈给跟随蜂, 跟随蜂则优先选择较好的蜜源进行跟随并在蜜源附近搜索,当达到开采蜜源上限,而新的蜜源质量没有得到提升,相应的雇佣蜂将转变为侦查蜂并重新随机搜索蜜源。

在求解优化问题时, 蜂群个体与蜜源一一对应,其位置为优化问题的解,蜜源质量为优化问题的适应度值。

蜂群通过下式初始化:
在这里插入图片描述

其中,xid代表蜜源i的第d维的位置;Ud和Ld为搜索空间上下限。

雇佣蜂根据下式进行更新(式1):
在这里插入图片描述

其中,vid是雇佣蜂在蜜源i附近搜索产生的一个新蜜源,φ是[-1,1]之间的随机数,决定了扰动幅度考虑,按照贪婪策略选择是否更新xi。

所有的雇佣蜂完成蜜源上式的更新后,飞回信息交流区共享蜜源信息。跟随蜂根据雇佣蜂分享的蜜源信息,按下式计算的概率进行跟随:

在这里插入图片描述

跟随蜂按照轮盘赌的方法选择雇佣蜂,即生成[0,1]之间的随机数r,若pi>r,则该跟随蜂按照雇佣蜂的方式在蜜源i周围生成新蜜源,并以贪婪策略选择是否保留原蜜源。

若蜜源xi在迭代次数达到阈值limit后还是没有更新成质量更好的蜜源,则蜜源xi会被放弃,与之对应的雇佣蜂会转变为侦查蜂,侦查蜂将在搜索空间中随机生成一个新蜜源代替xi(式2):
在这里插入图片描述

该算法的流程如下:

在这里插入图片描述

1.2 人工蜂群算法的改进&利用

在改进方面,首先,由原理可知,ABC算法的位置的更新主要依赖式1,而此公式适宜探索,但不利于开发,会导致收敛速度慢,可以考虑增加变更维度、引入群体中其他蜜源信息等方法加快收敛;其次,参数limit的选择对算法性能影响较大,太小的limit不利于蜂群协作、太大的limit限制了算法的探索能力,除设定为固定参数外,也可以考虑在不同迭代阶段进行自适应调整。

在利用方面,limit参数决定的放弃蜜源的机制是一个很有意思的方法,可以针对性的迭代掉一直没有变化的解,相较于以随机概率r来判断是否随机更新一个个体的位置(如黏菌算法)能更有效率的提升种群质量,跳出局部最优解。

02 优化算法有效性

当需要解决一些优化问题时,(为了好发文章)你可能会在一区期刊里找一些最新发表的优化算法,这些算法通常都在一些测试函数上获得了不错的效果,然而当你应用在你的优化问题中时,也许性能还不如以前的算法(之前我做三维路径规划出现过这个问题,新算法不如PSO),那么到底是哪里出了问题?

文献6提出近年大量出现的优化算法中,许多都存在“中心偏置算子”,就是算法能够随着迭代自行被“吸引”到最优解上。最常见的就是CEC2005中的0解集(如下图中的Optimum f)
在这里插入图片描述

引用文献7对灰狼优化算法GWO的实验,该文献对包括GWO在内的6算法对以上9个函数进行测试。尤其要注意在F7-F9上的表现,因为这三个函数的最优解集不是0。测试结果如下:
在这里插入图片描述

可以看到,在F1-F6上,GWO的性能尤其好,而F7-F9上的表现则没有那么惊艳,当然,也可能是函数复杂度的问题,因此文献又修改了实验条件,把这9个函数的最优解做一定偏移,如下:

在这里插入图片描述

注意,此时F1-F6函数的最优解集是k(k≠0),而F7-F9函数的最优解集则变成了0。由此,GWO的结果会是如何呢,见下图:

在这里插入图片描述

能够清楚的看到,结果发生了反转,在前6个函数的性能上,GWO性能反而大大下降,而在F7-F9上,性能又十分出彩。其中的原因,大概就是因为其带有了所谓的“中心偏置算子”让GWO的解能自然的收敛到0。

进一步,文献分析了“中心偏置算子”的由来,GWO的核心更新公式如下:
在这里插入图片描述

其中,A的计算公式如下:
在这里插入图片描述

众所周知,a是随着迭代次数递减到0的,这个参数A又会影响X(t+1)的更新,因此大概率是这个算子造成此现象,针对其他算法,也可以用同样的方法分析。

这个现象不仅困扰了我一段时间,后台也有一些朋友经常问我这个问题,今天这篇文章就相当于是给有相关问题的朋友解答一下疑惑吧。因此若各位朋友有这类“优化矛盾”(函数测试好,实际问题差)的问题,不妨再思考一下所选算法是否适用。当然有其他想法也欢迎一起讨论。

03 代码目录

继续接着ABC算法来讲,当然也可以分析ABC算法有无这个现象——显然是没有的哈哈(两个很简单的公式能分辨出来,一般2010年前的似乎都没这个问题)。

在这里插入图片描述

KAU提供的代码包括MATLAB和Python。考虑到很多同学获取代码后,MATLAB代码部分有乱码(MATLAB版本问题),有几个方法:

①可以将MATLAB版本改为2020及以上;

②将m文件用记事本打开,再将记事本中的代码复制到Matlab即可

代码都经过作者重新注释,代码更清爽,可读性强。
在这里插入图片描述

04 ABC算法性能

采用标准测试函数初步检验其寻优性能。在MATLAB中,进行标准函数的测试,执行程序结果如下:
在这里插入图片描述

05 源码获取

在公众号(KAU的云实验台)后台回复 ABC 即可

参考文献

[1] Karaboga D. An idea based on honey bee swarm for numerical optimization,TRO6[ R ].Kayseri , Turkey : Erciyes University , 2005.

[2]Karaboga D,Akay B. A comparative study of artificial bee colony al-gorithm[ J ]. Applied Mathematics and Computation , 2009, 214( 1 ) : 108-132.

[3]Karaboga D,Basturk B. On the performance of artificial bee colony(ABC) algorithm[ J ]. Applied Soft Computing , 2008,8 ( 1 ) :687-697.

[4]Akay B,Karaboga D. Parameter tuning for the artificial bee colonyalgorithm [ C]//Proc of International Conference on ComputationalCollective Intelligence. Berlin : Springer ,2009 ;608-619.

[5]宁爱平,张雪英.人工蜂群算法的收敛性分析[J].控制与决策,2013,28( 10) :1554-1558.

[6]Kdela J .A critical problem in benchmarking and analysis of evolutionary computation methods[J].Nature Machine Intelligence, 2022, 4:1238-1245.DOI:10.1038/s42256-022-00579-0.

[7]Niu, Peifeng et al. “The defect of the Grey Wolf optimization algorithm and its verification method.” Knowl. Based Syst. 171 (2019): 37-43.

[8]A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems:Applications and Trends

另:如果有伙伴有待解决的优化问题(各种领域都可),可以发我,我会选择性的更新利用优化算法解决这些问题的文章。

如果这篇文章对你有帮助或启发,可以点击右下角的赞/在看(ง •̀_•́)ง(不点也行),你们的鼓励就是我坚持的动力!若有定制需求,可私信作者。

  • 13
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
人工蜂群算法(Artificial Bee Colony Algorithm,ABC)是一种群体智能算法,可以用于求解优化问题。TSP(Traveling Salesman Problem)是一个著名的组合优化问题,其目标是找到一条最短的路径,使得旅行家可以经过所有城市并回到起点。 下面是利用 Python 实现人工蜂群算法优化求解 TSP 的步骤: 1. 定义问题:TSP 问题可以表示为一个图,其中每个城市表示一个节点,城市之间的距离表示边。我们需要找到一条路径,使得经过每个节点一次并返回起点的路径长度最小。 2. 定义蜜蜂:在 ABC 算法中,有三种蜜蜂:雇佣蜜蜂、侦查蜜蜂和观察蜜蜂。我们可以用 Python 类来表示这些蜜蜂。 3. 初始化蜜蜂群体:我们需要初始化一群雇佣蜜蜂,每个雇佣蜜蜂都代表一条路径。我们可以随机生成一些路径作为初始路径。 4. 计算适应度:我们需要计算每个雇佣蜜蜂的适应度,即路径长度。我们可以使用 TSP 问题中的欧几里得距离公式来计算两个城市之间的距离。 5. 进行搜索:在搜索过程中,我们需要让雇佣蜜蜂和侦查蜜蜂搜索新的解,并交换信息。我们还需要让观察蜜蜂选择最优解并更新雇佣蜜蜂的位置。 6. 更新最优解:我们需要记录最优路径和最优路径长度。 7. 停止条件:我们可以设置一个停止条件,例如连续多次迭代后最优解没有发生变化,或者达到了预设的迭代次数。 下面是 Python 代码实现: ```python import random import math # 问题定义 class TSP: def __init__(self, cities): self.cities = cities self.n = len(cities) def distance(self, i, j): xi, yi = self.cities[i] xj, yj = self.cities[j] return math.sqrt((xi-xj)**2 + (yi-yj)**2) def path_length(self, path): return sum([self.distance(path[i], path[(i+1)%self.n]) for i in range(self.n)]) # 蜜蜂类 class Bee: def __init__(self, path): self.path = path self.fitness = None # 雇佣蜜蜂类 class EmployedBee(Bee): def search(self, limit): # 从路径中随机选择两个城市 i, j = random.sample(range(len(self.path)), 2) # 生成新解 new_path = self.path.copy() new_path[i], new_path[j] = new_path[j], new_path[i] # 计算适应度 new_fitness = problem.path_length(new_path) # 如果新解更优,则更新 if new_fitness < self.fitness: self.path = new_path self.fitness = new_fitness limit[0] = 0 else: limit[0] += 1 # 侦查蜜蜂类 class ScoutBee(Bee): def search(self): # 生成新解 new_path = random.sample(self.path, len(self.path)) # 计算适应度 new_fitness = problem.path_length(new_path) # 更新解 self.path = new_path self.fitness = new_fitness # 观察蜜蜂类 class OnlookerBee(Bee): def search(self, limit, fitness_sum): # 选择一条路径 i = random.choices(range(len(employed_bees)), weights=fitness_sum)[0] employed_bee = employed_bees[i] # 从路径中随机选择两个城市 i, j = random.sample(range(len(employed_bee.path)), 2) # 生成新解 new_path = employed_bee.path.copy() new_path[i], new_path[j] = new_path[j], new_path[i] # 计算适应度 new_fitness = problem.path_length(new_path) # 如果新解更优,则更新 if new_fitness < self.fitness: self.path = new_path self.fitness = new_fitness employed_bee.path = new_path employed_bee.fitness = new_fitness limit[0] = 0 else: limit[0] += 1 # 初始化问题和蜜蜂 cities = [(random.uniform(0, 1), random.uniform(0, 1)) for _ in range(20)] problem = TSP(cities) employed_bees = [EmployedBee(random.sample(range(problem.n), problem.n)) for _ in range(10)] scout_bees = [ScoutBee(random.sample(range(problem.n), problem.n)) for _ in range(10)] onlooker_bees = [OnlookerBee(random.sample(range(problem.n), problem.n)) for _ in range(10)] # 迭代搜索 best_path = None best_fitness = math.inf limit = [0] for _ in range(100): # 计算适应度 for bee in employed_bees+scout_bees+onlooker_bees: bee.fitness = problem.path_length(bee.path) fitness_sum = [sum([1/bee.fitness for bee in employed_bees+onlooker_bees])] * len(employed_bees+onlooker_bees) # 雇佣蜜蜂搜索 for bee in employed_bees: bee.search(limit) # 侦查蜜蜂搜索 for bee in scout_bees: bee.search() # 观察蜜蜂搜索 for bee in onlooker_bees: bee.search(limit, fitness_sum) # 更新最优解 for bee in employed_bees+scout_bees+onlooker_bees: if bee.fitness < best_fitness: best_path = bee.path best_fitness = bee.fitness # 检查停止条件 if limit[0] >= 20: break # 输出结果 print(best_path) print(best_fitness) ``` 在这个例子中,我们使用了 20 个随机生成的城市,并且每个蜜蜂代表一条路径。我们迭代了 100 次,并记录了最优路径和最优路径长度。最后,我们输出了最优路径和最优路径长度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值