十种优化算法”ABC,GA,PSO,SSA,GWO,CSO,DBO,BWO,DE,OBLDE“对比(CEC2017)

以下从多个方面对 ABC、GA、PSO、SSA、GWO、CSO、DBO、BWO、DE、OBLDE 这十种优化算法基于 CEC2017 测试函数集进行对比分析:

1. 算法原理对比

  • ABC(人工蜂群算法):模拟蜜蜂的觅食行为,通过引领蜂、跟随蜂和侦察蜂三种角色协作搜索最优解。引领蜂探索新的食物源,跟随蜂根据引领蜂的信息选择有潜力的食物源,侦察蜂在陷入局部最优时随机搜索新区域。
  • GA(遗传算法):借鉴生物进化中的遗传和自然选择机制,通过选择、交叉和变异操作对种群中的个体进行进化,不断淘汰适应度低的个体,保留适应度高的个体,逐步逼近最优解。
  • PSO(粒子群优化算法):模拟鸟群或鱼群的群体运动行为,每个粒子代表一个潜在解,在解空间中飞行。粒子根据自身历史最优位置和群体全局最优位置来调整自己的速度和位置,向更优解的方向移动。
  • SSA(麻雀搜索算法):模拟麻雀的觅食和反捕食行为,将麻雀分为发现者、加入者和侦察者。发现者负责寻找食物资源,加入者跟随发现者获取食物,侦察者监视周围环境,当发现危险时发出警报,引导群体调整位置。
  • GWO(灰狼优化算法):模拟灰狼群体的捕食行为,将灰狼分为 α、β、δ 和 ω 四个等级。α 狼是领导者,β 和 δ 狼协助 α 狼决策,ω 狼服从命令。通过模拟灰狼的围捕、攻击等行为来搜索最优解。
  • CSO(布谷鸟搜索算法):模拟布谷鸟的寄生繁殖行为,每只布谷鸟代表一个解。布谷鸟通过 Levy 飞行随机搜索新的解空间,同时以一定概率抛弃较差的解,不断更新解以逼近最优解。
  • DBO(蜣螂优化算法):模拟蜣螂的滚球、觅食、繁殖等行为。蜣螂在搜索过程中,通过与周围环境和其他蜣螂的交互,不断调整自己的位置,以找到最优的食物源或繁殖地点。
  • BWO(白鲸优化算法):模仿白鲸的社会行为和觅食策略,白鲸通过协作、回声定位等方式在海洋中寻找食物。算法中白鲸个体根据自身经验和群体信息更新位置,以实现对最优解的搜索。
  • DE(差分进化算法):通过对种群中个体进行差分变异、交叉和选择操作来更新种群。差分变异操作利用种群中个体之间的差异生成新的个体,交叉操作增加个体的多样性,选择操作保留适应度较好的个体。
  • OBLDE(基于对立学习的差分进化算法):在 DE 算法的基础上引入对立学习机制。对立学习通过生成当前解的对立解,并比较两者的适应度,选择更优的解进入下一代,提高算法的搜索效率和收敛速度。

2. 收敛速度对比

  • 较快的算法:PSO、DE 和 OBLDE 通常在收敛速度方面表现较好。PSO 粒子通过共享全局最优信息,能够快速向最优解方向移动;DE 通过差分变异和交叉操作,能够快速生成新的个体并更新种群;OBLDE 由于引入了对立学习机制,能够更
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值