最佳拟合直线

Problem Description

在很多情况下,天文观测得到的数据是一组包含很大数量的序列点图象,每一点用x值和y值定义。这就可能需要画一条通过这些点的最佳拟合曲线。

为了避免只对个别数据分析,需要进行最佳曲线拟合。考虑N个数据点,它们的坐标是(X1,Y1)(X2,Y2)...(XN,YN)。假设这些值中的X是严格的精确值,Y的值是测量值(含有一些误差)
         

对于一个给定的X,如X1,对应的值Y1与曲线C上对应的Y值将存在一个差值。我们用D1表示这个差值,有时我们也称这个差值为偏差、误差或残差,它可能是正、负或零。类似的,X2...,XN,对应的差值为D2,....,DN

 我们用D1+ D2+ ... + DN2 作为衡量曲线C拟合的“最佳”程度,这个值越小越好,越大则越不好。因此,我们做以下定义:任何一种类型的曲线,它们都有一个共同的特性,当ΣDi2最小时,称为最佳拟合曲线。注:∑指“取和”计算。 一条曲线具有这一特性时,称之为“最小二乘拟合”,这样的曲线称为“最小二乘曲线”。

本次的计算任务是拟合为一条直线,数学上称之为“线性回归”。“回归”一词看起来有点陌生,因为计算最佳曲线没什么好“回归”的,最好的术语就是“曲线似合”,在直线情况下就是“线性曲线拟合”。

你的任务是编写程序用最小二乘法计算出以下线性方程的系数(斜率a以及y轴的截距b):

 y = a*x + b   (4.1)

 a和b可以使用以下公式计算:
 
式中N是数据点的个数。注意,以上两式具有相同的分母,∑指逐项加法计算(取和)。∑x指对所有的x值求和,∑y指对所以的y值求和,∑(x^2)指对所有x的平方求和。∑xy指对所有的积xy进行取和计算。应注意,∑xy 与 ∑x*∑y是不相同的(“积的和”与“和的积”是不同的),同样(∑x)^2与∑(x^2)也是不相同的(“和的平方”与“平方的和”是不相同的)。


Input
  n 组整数表示 x i y i   ,期中|x|<=10 6 ,|y|<=106, n < 15
Output
  最佳拟合曲线参数 a b a b 各占一行, b 精确到小数点后 3 位。
Sample Input
4
1  6
2  5
3  7
4  10
Sample Output
1.400
3.500
code:

import java.util.Scanner;

public class Main {

	public static void main(String[] args) {
		// TODO Auto-generated method stub

		Scanner reader = new Scanner(System.in);
		
		int n;
		long x[] = new long[20];
		long y[] = new long[20];
		n = reader.nextInt();
		for(int i = 0;i<n;i++)
		{
			x[i] = reader.nextLong();
			y[i] = reader.nextLong();
		}
		double a, b;
		a = aa(x, y, n);
		b = bb(x, y, n);
		System.out.printf("%.3f\n", a);
		System.out.printf("%.3f\n", b);
	}
	public static double aa(long x[], long y[], int n)
	{
		double a = 0, b=1, c = 0, d = 0, ans;
		double sum = 0;
		for(int i = 0;i<n;i++)
		{
			a += (x[i]*y[i]);
		}
		a = a*n;
		for(int i = 0;i<n;i++)
		{
			sum+=x[i];
		}
		b*=sum;
		sum = 0;
		for(int i = 0;i<n;i++)
		{
			sum+=y[i];
		}
		b*=sum;
		for(int i = 0;i<n;i++)
		{
			c+=(x[i]*x[i]);
		}
		c*=n;
		for(int i = 0;i<n;i++)
		{
			d+=x[i];
		}
		d = d*d;
		ans = (a-b)/(c-d);
		return ans;
	}
	public static double bb(long x[], long y[], int n)
	{
		double a = 0, b=1, c = 0, d = 0, ans;
		double sum = 0;
		for(int i = 0;i<n;i++)
		{
			sum+=y[i];
		}
		a+=sum;
		sum = 0;
		for(int i = 0;i<n;i++)
		{
			sum+=(x[i]*x[i]);
		}
		a*=sum;
		sum = 0;
		for(int i = 0;i<n;i++)
		{
			sum+=x[i];
		}
		b*=sum;
		sum = 0;
		for(int i = 0;i<n;i++)
		{
			sum+=(x[i]*y[i]);
		}
		b*=sum;
		for(int i = 0;i<n;i++)
		{
			c+=(x[i]*x[i]);
		}
		c*=n;
		for(int i = 0;i<n;i++)
		{
			d+=x[i];
		}
		d = d*d;
		ans = (a-b)/(c-d);
		return ans;
	}
}

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值