深度学习论文: WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation

WinCLIP是一种基于CLIP的深度学习方法,用于零样本和少样本的异常分类与分割。它利用文本-图像关联,通过参考关联和语言驱动的模板,实现精确的异常识别和定位,尤其在MVTecAD、CIFAR-10和MNIST等数据集上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习论文: WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation
WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation
PDF: https://arxiv.org/pdf/2303.14814.pdf
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

WinCLIP是一种基于CLIP(Contrastive Language-Image Pretraining)模型的方法,用于零样本和少样本的异常分类和分割任务。该方法结合了文本编码器和图像编码器,利用CLIP模型的文本-图像关联能力来实现准确的异常识别和定位。

WinCLIP的核心思想是通过将不同状态和模板转换为文本嵌入,然后与图像编码器生成的图像嵌入进行关联,学习到异常和正常样本之

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mingo_敏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值