深度学习论文: Emerging Properties in Self-Supervised Vision Transformers

深度学习论文: Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
PDF: https://arxiv.org/pdf/2104.14294v1
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

本文探讨自监督学习是否为Vision Transformer(ViT)带来了相较于卷积网络的新特性。发现自监督ViT特征包含明确的图像语义分割信息,并展现出色的k-NN分类性能。同时,强调了动量编码器、多裁剪训练及小补丁在ViT中的重要性。基于这些发现,提出了DINO这一无标签自蒸馏方法,与ViT结合在ImageNet上实现了80.1%的top-1准确率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mingo_敏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值