深度学习论文: Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
PDF: https://arxiv.org/pdf/2104.14294v1
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks
1 概述
本文探讨自监督学习是否为Vision Transformer(ViT)带来了相较于卷积网络的新特性。发现自监督ViT特征包含明确的图像语义分割信息,并展现出色的k-NN分类性能。同时,强调了动量编码器、多裁剪训练及小补丁在ViT中的重要性。基于这些发现,提出了DINO这一无标签自蒸馏方法,与ViT结合在ImageNet上实现了80.1%的top-1准确率。