【YOLOv8改进 - 特征融合】 YOGA iAFF :注意力机制在颈部的多尺度特征融合

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240620102111648

摘要

我们推出 YOGA,这是一种基于深度学习的轻量级目标检测模型,可以在低端边缘设备上运行,同时仍能实现有竞争力的准确性。 YOGA 架构由一个具有廉价线性变换的两阶段特征学习管道组成,它仅使用传统卷积神经网络所需的一半卷积滤波器来学习特征图。此外,它使用注意力机制在颈部执行多尺度特征融合,而不是传统检测器使用的朴素串联。 YOGA 是一种灵活的模型,可以轻松地放大或缩小几个数量级,以适应广泛的硬件限制。我们使用 10 多个最先进的目标检测器在 COCO-val 和 COCO-testdev 数据集上评估 YOGA。结果表明,YOGA 在模型大小和精度之间取得了最佳权衡(AP 提高了 22%,参数和 FLOP 减少了 23-34%),使其成为低端野外部署的理想选择边缘设备。我们在 NVIDIA Jetson Nano 上的硬件实现和评估进一步证实了这一点。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

YOGA是一种基于深度学习的轻量级目标检测模型,旨在在低端边缘设备上运行,同时实现竞争性的准确性。YOGA架构包括一个两阶段特征学习流水线,其中使用廉价的线性转换学习特征图,仅需传统卷积神经网络所需卷积滤波器数量的一半。此外,它在其"neck"部分使用了一种注意力机制进行多尺度特征融合,而不是传统检测器所使用的简单串联。YOGA是一个灵活的模型,可以轻松地按数量级适应各种硬件约束。我们在COCO-val和COCO-testdev数据集上评估了YOGA,并与其他10多种最先进的目标检测器进行了比较。结果显示,YOGA在模型大小和准确性之间取得了最佳平衡(AP提高了高达22%,参数和FLOPs减少了23-34%),使其成为在低端边缘设备上部署的理想选择。

  1. 轻量级设计:YOGA通过使用廉价的线性转换(group convolution&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值