【YOLOv8改进- 损失函数】 NWD(Normalized Wasserstein Distance:归一化 Wasserstein 距离),助力微小目标检测。

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240830222028156

摘要

检测微小目标是一个非常具有挑战性的问题,因为微小目标的尺寸仅包含几个像素。我们证明了当前最先进的检测器在微小目标上的表现并不理想,原因在于缺乏足够的外观信息。我们的关键观察是,基于交并比(IoU)的度量方法(例如IoU本身及其扩展)对微小目标的位置偏差非常敏感,并且在使用基于锚点的检测器时会严重影响检测性能。为了解决这一问题,我们提出了一种新的评估度量方法,使用Wasserstein距离来检测微小目标。具体来说,我们首先将边界框建模为二维高斯分布,然后提出了一种新的度量方法,称为归一化Wasserstein距离(NWD),通过边界框对应的高斯分布来计算它们之间的相似性。所提出的NWD度量方法可以轻松嵌入到任何基于锚点的检测器的分配、非极大值抑制和损失函数中,以替代常用的IoU度量。我们在一个用于微小目标检测的新数据集(AI-TOD)上评估了我们的度量方法,该数据集的平均目标尺寸比现有的目标检测数据集要小得多。大量实验表明,采用NWD度量方法后,我们的方法性能比标准微调基线高出6.7个AP点,比最先进的竞争对手高出6.0个AP点。代码已发布在:https://github.com/jwwangchn/NWD。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

Normalized Wasserstein Distance (NWD) 是一种专门为微小物体检测(Tiny Object Detection, TOD)设计的度量方法,旨在替代传统的 IoU(Intersection over Union)度量,用于衡量两个边界框(bounding boxes)之间的相似性。

1. NWD 的定义

NWD 基于 Wasserstein 距离

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值