【YOLOv8改进 - 注意力机制】 CAA: 上下文锚点注意力模块,处理尺度变化大或长形目标

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240810101853411

摘要

遥感图像(RSI)中的目标检测经常面临一些日益增加的挑战,包括目标尺度的大幅变化和上下文的多样性。以往的方法尝试通过扩展主干网络的空间感受野来应对这些挑战,通常采用大核卷积或膨胀卷积。然而,前者通常会引入大量的背景噪声,而后者则有可能生成过于稀疏的特征表示。在本文中,我们引入了多核嵌入网络(PKINet)来处理上述挑战。PKINet 采用了多尺度卷积核(不含膨胀)来提取不同尺度的目标特征并捕捉局部上下文信息。此外,还并行引入了上下文锚点注意力(CAA)模块,以捕捉长距离的上下文信息。这两个组件共同作用,提升了PKINet在四个具有挑战性的遥感检测基准(即DOTA-v1.0、DOTA-v1.5、HRSC2016和DIOR-R)上的性能。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

上下文锚点注意力模块(Context Anchor Attention, CAA) 是PKINet中一个关键的模块,设计用于捕捉远程上下文信息,并在特征提取过程中增强中心特征的表达能力。CAA模块的引入旨在解决遥感图像中目标检测时,远程上下文信息不足的问题,特别是在处理尺度变化大或长形目标时表现突出。

1. 模块结构与操作
  • 局部特征提取:首先,CAA模块通过全局平均池化操作获取局部区域特征。接下来,这些特征通过一个1×1的卷积层,以减少维度和计算量。

  • 条带卷积:为了有效捕捉远程上下文信息,CAA模块采用了两个深度可分离条带卷积(strip convolutions),分别在水平方向和垂直方向上进行。这种设计被用来模拟一个大核卷积的效果,能够在保持轻量化的同时,显著扩大感受野。

### 实现 CAA 注意力机制 CAA (Coordinate Attention) 是一种新颖的注意力机制,旨在解决传统空间注意力机制计算复杂度高的问题。通过引入坐标轴方向上的注意力分布,可以更高效地捕捉特征图中的空间关系。 #### CAA 注意力机制的工作原理 CAA 将传统的二维卷积操作分解为两个一维卷积,在水平和垂直方向上分别应用注意力权重。这种设计不仅降低了计算成本,还提高了模型的表现能力[^2]。 ```python import torch from torch import nn class CoordAtt(nn.Module): def __init__(self, inp, oup, reduction=32): super(CoordAtt, self).__init__() self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None)) mip = max(8, inp // reduction) self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) def forward(self, x): identity = x n, c, h, w = x.size() x_h = self.pool_h(x) x_w = self.pool_w(x).permute(0, 1, 3, 2) y = torch.cat([x_h, x_w], dim=2) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid() a_w = self.conv_w(x_w).sigmoid() out = identity * a_h * a_w return out ``` 这段代码实现了 CAA 的核心逻辑,其中 `CoordAtt` 类定义了一个完整的协调注意模块。该模块接收输入张量并返回经过处理后的输出张量,保留了原始的空间维度不变的同时增强了重要的局部区域特性。 为了将此模块集成到 YOLOv11 中: 1. 修改骨干网络部分(Backbone),在适当位置插入上述定义好的 `CoordAtt` 层; 2. 调整配置文件以适应新的架构变化; 3. 进行充分训练验证其有效性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值