卡尔曼滤波
shaozhenghan
GitHub: https://github.com/shaozhenghan
展开
-
阅读笔记《CKF滤波算法及其在航天器自主导航中的应用》
《CKF滤波算法及其在航天器自主导航中的应用》是一篇非常好的论文,详细介绍推到了容积卡尔曼滤波(CKF)的原理及其与UKF的对比。1. 基本滤波问题其中公式3.1.5 由公式3.1.4根据 3变量的贝叶斯规则 得来:P(x | y, z) = P(y | x, z) * P(x | z) / P (y | z)公式3.17和公式3.18采用了条件独立。公式3.1....原创 2019-03-02 14:24:19 · 2862 阅读 · 1 评论 -
概率与贝叶斯基础(持续更新)
知乎上的概率机器人知识总结,总体写的深入浅出1.https://zhuanlan.zhihu.com/p/57307528补充3随机变量的贝叶斯规则的证明,这个用的真的非常多。这也是《概率机器人》第2章13页公式2.162.状态转移概率,测量概率,条件独立假设重要性https://zhuanlan.zhihu.com/p/57391230补充概念:马尔科夫假设:...原创 2019-03-02 15:25:49 · 332 阅读 · 0 评论 -
对基于卡尔曼滤波的跟踪算法的一些理解(一)
读《多假设航迹合成算法》这篇论文的一些总结和个人理解卡尔曼滤波(KF)用在跟踪上,从目标的动力学方程(系统方程)和观测方程为前提,即要求系统模型已知(包括模型噪声和观测噪声的统计特性)单radar的目标跟踪主要包括:航迹起始、数据关联、状态估计、航迹终止多传感器则需要航迹合成,即多个传感器的航迹属于同一targetKF跟踪的主要问题是,运动模型选择、噪声协方差的匹配所谓的...原创 2019-03-02 16:01:50 · 5125 阅读 · 0 评论 -
(转)《开发者说 | 关于激光雷达感知模块的分析》
原创:Apollo社区开发者Apollo开发者社区2018-11-14本文档结合代码详细地解释感知模块中障碍物感知的流程与功能,也可以官方参考文档。(https://github.com/ApolloAuto/apollo/blob/master/docs/specs/3d_obstacle_perception_cn.md)硬件简介...转载 2019-03-03 14:38:07 · 955 阅读 · 0 评论 -
目标跟踪中的坐标变换问题以及四元数
在自动驾驶的目标跟踪问题中,自车的坐标系随着自车运动,包括yaw angle。因此,在跟踪时,需要这样做:车身偏航角的变化率是可以得到的yaw_rate,在每次触发跟踪算法时根据两帧时间戳的差值对yaw_rate做积分,就有这个时间段内产生的偏航角变化,把这个值算到卡尔曼的估计中,再和测量值做加权。也就是说,卡尔曼的预测过程=基于目标运动模型+自车坐标系变化引起的坐标变换(旋转).可以这样理解...原创 2019-03-03 15:26:01 · 2157 阅读 · 0 评论 -
对基于卡尔曼滤波的跟踪算法的一些理解(二)
KF跟踪时常见的运动模型有匀速运动模型(CV)和匀加速运动模型(CA)常用传感器是Lidar和Radar其中,Lidar只能测距不能测速,而radar可以测速。因此,在使用Lidar进行跟踪时,速度可以初始化为0,在预测阶段正常计算,在测量更新阶段使用测量矩阵H 将状态向量中的速度舍弃掉。但这并不意味着速度就不能更新了,因为计算得到的卡尔曼增益K可以根据预测测量值和实际测量值的差对速度...原创 2019-03-03 16:15:48 · 1274 阅读 · 0 评论 -
关于 坐标变换 的总结
原创 2019-05-17 11:00:34 · 421 阅读 · 0 评论