机器学习/深度学习
shaozhenghan
GitHub: https://github.com/shaozhenghan
展开
-
(转)深度学习中的Batch Normalization
转载自:https://blog.csdn.net/whitesilence/article/details/75667002 此文结合tensorflow写的很清晰https://www.zhihu.com/question/38102762转载 2018-07-18 19:36:13 · 155 阅读 · 0 评论 -
集成学习方法之 Boosted Tree 原理
之前在点云分类中用了SVM和Random Forest , 发现RF 的效果非常好,比SVM好许多,因此想再试一下其它基于树的集成学习方法,比如Boosted Tree 和 Xgboost,Xgboost 基于前者是基于前者实现的,优点是相对前者可以并行化。这里先看Boosted Tree。参考文献:https://xgboost.readthedocs.io/en/latest/tuto...原创 2018-08-29 16:40:48 · 2254 阅读 · 0 评论 -
读论文 3D Point Cloud Classification using 3D Modified Fisher Vector Representation for CNN
3D Point Cloud Classification and Segmentation using 3D Modified Fisher Vector Representation for Convolutional Neural Networks 模型结构:可见模型主要分为两部分,一部分是将输入点云变为 Fisher Vector 表达,另一部分是进行CNN处理其中 I...原创 2018-08-31 19:30:08 · 1134 阅读 · 0 评论 -
变量相似度的度量
变量相似度的度量有许多方法,比如卡方检验,线性相关系数,F检验,互信息等线性相关系数只能判别[线性]相关性,线性相关性低不代表没有别的相关性。卡方检验:卡方越大说明两变量越相关,使用的时候需要设置零假设F检验:检验两个正态随机变量的总体方差是否相等。互信息:用到了信息熵,估计离散变量需要用到k近邻。k近邻的选取 见论文: Mutual Information between Dis...原创 2018-08-16 23:10:34 · 1776 阅读 · 0 评论 -
3D激光点云物体分类(Object Classification)常用特征梳理与总结
物体分类常用机器学习的方法,这里有句话说的透彻:数据与特征决定了机器学习的上限,而后面的模型/算法/参数只是来逼近这个上限。所以说特征的选择至关重要。这里对基于激光点云的物体分类常见特征做一下归纳整理。方便进一步学习,以及后续论文的写作。一、对点云特征的要求理想情况下相同或相似表面上的点的特征值将非常相似(相对特定度量准则〉,而不同表面上的点的特征描述子将有明显差异 。 下面几个条件,通过...原创 2018-08-01 20:43:10 · 15918 阅读 · 2 评论 -
(转)一种好用的激光点云加标签的方法和工具
论文:Multi-Label Point Cloud Annotation by Selection of Sparse Control Points原文:https://www.computer.org/csdl/proceedings/3dv/2017/2610/00/261001a301-abs.html翻译: https://blog.csdn.net/m0_37903426/ar...转载 2018-08-10 14:55:33 · 3061 阅读 · 1 评论 -
读论文:CNN for Very Fast Ground Segmentation in Velodyne LiDAR Data
https://arxiv.org/pdf/1709.02128v1.pdf提取地面点的传统方法是基于特征(强度,几何)。有一定局限性,比如地面起伏大的时候。而这篇文章用FCN的方法训练提取地面点,这种方法其实是像素级别的语义分割,也可以用在别的物体的分类上。具体以后补。 ...原创 2018-07-27 22:39:40 · 439 阅读 · 0 评论 -
读论文:Real-time Object Classification in 3D Point Clouds Using Point Feature Histograms
马上补原创 2018-08-09 16:16:38 · 523 阅读 · 2 评论 -
读《协方差矩阵和散布矩阵(散度矩阵)的意义》一文的思考与补充
这篇文章《协方差矩阵和散布矩阵(散度矩阵)的意义》讲的很透彻,分享之:http://blog.csdn.net/guyuealian/article/details/68922981我自己补充几点自己的进一步理解:1。通常来说特征值没有一个上限,为了方便量化比较,归一化到 0-1 范围,可以将单个特征值di 用 di/(d1+d2+...+dn)来代替。另外,在数理统计上,协方差矩阵一定是...原创 2018-07-30 20:56:46 · 1195 阅读 · 0 评论 -
主成份分析(PCA)基本原理/步骤及其C++ 实现与优化(结合Eigen矩阵库)
主成份分析是常用的降维方法,其他降维方法还有线性判别分析LDA,二者的区别见:https://www.cnblogs.com/pinard/p/6244265.html 简要说就是:1.PCA将原始数据投影到方差最大的方向,LDA将数据投影到不同样本的中心点距离最大的方向。2. PCA是无监督降维,LDA是有监督降维。3. 若分类主要依赖均值而非方差,则LDA效果好,反之PCA效果...原创 2018-07-29 20:37:29 · 2483 阅读 · 3 评论 -
点云 数据增强(Data Augmentation):方法与python代码
数据集增强(Data Augmentation)是机器学习常用的数据预处理方法。例如,当手头的数据量太少时,可以人工生成一些有意义的数据用来训练,这种数据获取方法的突出优点是:成本低,效果好。另外,当用来分类的数据集有数据倾斜(skewed data)即某一类样本比另一类多很多时,可以这对样本较少的一类进行数据增强。在图像领域,常用的数据增强方法有:旋转,镜像,缩放等。而在激光点云中,常用...原创 2018-07-28 21:56:03 · 11220 阅读 · 7 评论 -
tensorflow 中 Batch Normalization 代码实现
理论部分结合:https://www.zhihu.com/question/38102762batch_norm_template 函数实现def batch_norm_template(inputs, is_training, scope, moments_dims, bn_decay): """ Batch normalization on convolutional maps ...原创 2018-07-18 19:30:39 · 1833 阅读 · 0 评论 -
(转)《开发者说 | 关于激光雷达感知模块的分析》
原创:Apollo社区开发者Apollo开发者社区2018-11-14本文档结合代码详细地解释感知模块中障碍物感知的流程与功能,也可以官方参考文档。(https://github.com/ApolloAuto/apollo/blob/master/docs/specs/3d_obstacle_perception_cn.md)硬件简介...转载 2019-03-03 14:38:07 · 955 阅读 · 0 评论