1.1 基本概念
数量矩阵:对角矩阵的每个元素都相等
行最简形矩阵:行阶梯型矩阵的每个非零行的非零首元都为1,且这些非零首元所在列的其他元素都为0
同型矩阵:行数和列数都相等的两个矩阵
负矩阵:所有元素是原矩阵的相反数
1.2 基本运算
数乘:kA使A的所有元素a变成ka
线性运算:包括矩阵的加法和数乘
从向量X到向量Y的线性变换:Y=AX
线性方程组:Ax=b,A为系数矩阵,x为未知向量,b为常数向量
两个非零矩阵的乘积可能为零,如:A=[1 1; -1 -1],B=[-1 1; 1 -1],AB=[0 0; 0 0]
A、B可交换:AB=BA
判断可交换:如果AB=E,那么A和B可交换。即A和A的逆矩阵可交换。
可交换矩阵的二项式定理:
两个n阶对角矩阵是可交换的,且乘积仍然是对角矩阵
矩阵的m次多项式:
求A^n:
(1)A拆成可交换矩阵的乘积,A=BC,其中B为n1,C为1n,然后把首尾的B和C拎出来,求里面常数的n-1次方
(2)A拆成可交换矩阵的和,用二项式定理展开
矩阵转置的性质:
任意一个n阶矩阵都可以表示成一个对称矩阵和一个反对称矩阵的和:
例题
1.3 分块矩阵
常用的分块法有三种:
(1)按列分块
(2)按行分块
(3)分块对角矩阵
加法:A与B的各分块都是同型矩阵,则:
数乘:
乘法:
转置:
例题
1.4 初等变换与初等矩阵
三种初等行变换:
(1)对换变换:两行互换
(2)倍乘变换:用不为0的k去乘某一行
(3)倍加变换:某一行乘k再加到另一行
初等变换都是可逆的
矩阵等价:A可以经过有限次初等变换化成B,记为A≅B,等价具有传递性
等价标准形:
则E是A的等价标准形,且具有唯一性
化等价标准形:
三种初等矩阵:
(1)对换矩阵:
除了第i行和第j行外,其他行都是主对角线为1,这样EA的结果是让A除了第i和j行外保持不变;E中第i行取第j列为1,就是让A的第i行用第j行赋值;E的第j行取第i列为1同理。
(2)倍乘矩阵:
E的第i行中第i列为k,对应取A的第i行乘k
(3)倍加矩阵:
在E的第i行不仅取第i列为1,保存了A的第i行,而且取第j列为k,使得A的第i行加上了它第j行的k倍。
行变换:左乘初等矩阵;列变换:右乘初等矩阵
用U表示行最简矩阵,对于初等矩阵Pi,有
注意P1是第一个乘的,在最靠近A的地方,对应第一步行变换。
同理可以取Qj,使得
化为等价标准型。
1.5 方阵的逆矩阵
可逆的行最简矩阵是单位矩阵
初等矩阵都可逆,且逆矩阵也是初等矩阵
性质:
判断可逆:
(1)对于给定的A,设B可以满足AB=E,左边化成用B的元素表示的式子,令它与右边相等,如果可以解出B的元素,那么A是可逆的,如果无解,A就是不可逆的。
(2)如果A中有某一行元素全为0,那么它是不可逆的。
(4)充要条件:A可以写成初等矩阵的乘积。
(5)充要条件:A可以经过初等行变换化为单位矩阵,即存在Pi,使得
此时
A的逆矩阵为
(6)充要条件:|A|≠0
(7)分块对角阵可逆的充要条件:每个分块都可逆。
求A的逆矩阵:
(1)对具体数值表示的矩阵,都可以用:对分块矩阵[A,E]进行有限次初等行变换,当左边化为E时,右边就是A的逆矩阵;或者对[A;E]进行有限次初等列变换,下面是A的逆矩阵。
(2)对低阶矩阵:可以用
高阶就太麻烦了。
(3)对抽象矩阵:已知f(A)=0的,通过因式提取判断可逆、求逆矩阵。
(4)对高阶矩阵:用分块矩阵化简计算
(5)对数值型分块对角阵:
(6)对抽象分块对角阵:先证明可逆,然后假设逆矩阵的形式,通过恒等式求解逆矩阵。
例题:
1.6 方阵的行列式
性质:
(1)A和A的转置的行列式相等
(2)如果行列式有两行/列元素相等或成比例,那么行列式的值为0
(3)奇数次行/列对换变换改变行列式的符号
(4)行/列倍加变换不改变行列式的值
(5)用k乘行列式,相当于将行列式中某一行或某一列的元素乘以k
(6)某一行/列的公因数可以提到外面:
(7)行列元素可以拆分:
(8)上/下三角行列式的值: 等于主对角线上元素的连乘积
(9)分块对角矩阵的值:等于主对角线上分块行列式的连乘积:
(10)乘法定理:
(11)按行展开/按列展开:
(12)n阶行列式的展开式有n!项。每一项是A的不同行不同列的各元素之积,即
其中
为1到n的一个一元排列,每一项前面的正负号取决于这个排列的逆序数。
(13)当i≠j时,第i行元素与第j行的代数余子式(也就是不匹配的)乘积之和为0。引入克罗内克符号:
则:
计算:
(1)用定义、性质
(2)数字型:用倍加变换,变成三角矩阵,然后求主对角线元素乘积
(3)字母型:按行/列展开、数学归纳法、递推法
伴随矩阵:
伴随矩阵性质:
如果|A|≠0,则称A为非奇异方阵。
例题
1.7 矩阵的秩
矩阵A的k阶子式:任取k行k列按原来的顺序组成的k阶行列式
A的秩:A中所有不为0的子式的最高阶数,记为r(A)。零矩阵的秩为0
性质:
求秩:
(1)利用定义
(2)行阶梯型矩阵的秩=它的非零行数
(3)如果A和B等价,那么r(A)=r(B)
(4)P,Q可逆时:r(A)=r(PA)=r(AQ)=r(PAQ)
参考文献
陈建龙,周建华,张小向,韩瑞珠,周后型.线性代数(第二版)