线性代数复习归纳(一):矩阵+例题

1.1 基本概念

数量矩阵:对角矩阵的每个元素都相等
行最简形矩阵:行阶梯型矩阵的每个非零行的非零首元都为1,且这些非零首元所在列的其他元素都为0
同型矩阵:行数和列数都相等的两个矩阵
负矩阵:所有元素是原矩阵的相反数

1.2 基本运算

数乘:kA使A的所有元素a变成ka
线性运算:包括矩阵的加法和数乘
从向量X到向量Y的线性变换:Y=AX
线性方程组:Ax=b,A为系数矩阵,x为未知向量,b为常数向量
两个非零矩阵的乘积可能为零,如:A=[1 1; -1 -1],B=[-1 1; 1 -1],AB=[0 0; 0 0]
A、B可交换:AB=BA
判断可交换:如果AB=E,那么A和B可交换。即A和A的逆矩阵可交换。
可交换矩阵的二项式定理:
在这里插入图片描述
两个n阶对角矩阵是可交换的,且乘积仍然是对角矩阵
矩阵的m次多项式:
在这里插入图片描述
求A^n:
(1)A拆成可交换矩阵的乘积,A=BC,其中B为n1,C为1n,然后把首尾的B和C拎出来,求里面常数的n-1次方
(2)A拆成可交换矩阵的和,用二项式定理展开
矩阵转置的性质:
在这里插入图片描述
在这里插入图片描述
任意一个n阶矩阵都可以表示成一个对称矩阵和一个反对称矩阵的和:
在这里插入图片描述
在这里插入图片描述
例题
在这里插入图片描述
在这里插入图片描述

1.3 分块矩阵

常用的分块法有三种:
(1)按列分块
在这里插入图片描述
(2)按行分块
在这里插入图片描述
(3)分块对角矩阵
在这里插入图片描述
在这里插入图片描述
加法:A与B的各分块都是同型矩阵,则:
在这里插入图片描述
数乘:
在这里插入图片描述
乘法:
在这里插入图片描述
在这里插入图片描述
转置:
在这里插入图片描述
例题
在这里插入图片描述

1.4 初等变换与初等矩阵

三种初等行变换:
(1)对换变换:两行互换
(2)倍乘变换:用不为0的k去乘某一行
(3)倍加变换:某一行乘k再加到另一行
初等变换都是可逆的
矩阵等价:A可以经过有限次初等变换化成B,记为A≅B,等价具有传递性
等价标准形:
在这里插入图片描述
则E是A的等价标准形,且具有唯一性
化等价标准形:
在这里插入图片描述
三种初等矩阵:
(1)对换矩阵:
在这里插入图片描述
除了第i行和第j行外,其他行都是主对角线为1,这样EA的结果是让A除了第i和j行外保持不变;E中第i行取第j列为1,就是让A的第i行用第j行赋值;E的第j行取第i列为1同理。
(2)倍乘矩阵:
在这里插入图片描述
E的第i行中第i列为k,对应取A的第i行乘k
(3)倍加矩阵:
在这里插入图片描述
在E的第i行不仅取第i列为1,保存了A的第i行,而且取第j列为k,使得A的第i行加上了它第j行的k倍。
行变换:左乘初等矩阵;列变换:右乘初等矩阵
用U表示行最简矩阵,对于初等矩阵Pi,有
在这里插入图片描述
注意P1是第一个乘的,在最靠近A的地方,对应第一步行变换。
同理可以取Qj,使得
在这里插入图片描述
化为等价标准型。

1.5 方阵的逆矩阵

可逆的行最简矩阵是单位矩阵
初等矩阵都可逆,且逆矩阵也是初等矩阵
性质:
在这里插入图片描述
判断可逆:
(1)对于给定的A,设B可以满足AB=E,左边化成用B的元素表示的式子,令它与右边相等,如果可以解出B的元素,那么A是可逆的,如果无解,A就是不可逆的。
(2)如果A中有某一行元素全为0,那么它是不可逆的。
(4)充要条件:A可以写成初等矩阵的乘积。
(5)充要条件:A可以经过初等行变换化为单位矩阵,即存在Pi,使得
在这里插入图片描述
此时
在这里插入图片描述
A的逆矩阵为
在这里插入图片描述
(6)充要条件:|A|≠0
(7)分块对角阵可逆的充要条件:每个分块都可逆。
求A的逆矩阵:
(1)对具体数值表示的矩阵,都可以用:对分块矩阵[A,E]进行有限次初等行变换,当左边化为E时,右边就是A的逆矩阵;或者对[A;E]进行有限次初等列变换,下面是A的逆矩阵。
(2)对低阶矩阵:可以用
在这里插入图片描述
高阶就太麻烦了。
(3)对抽象矩阵:已知f(A)=0的,通过因式提取判断可逆、求逆矩阵。
(4)对高阶矩阵:用分块矩阵化简计算
(5)对数值型分块对角阵:
在这里插入图片描述
(6)对抽象分块对角阵:先证明可逆,然后假设逆矩阵的形式,通过恒等式求解逆矩阵。
例题:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.6 方阵的行列式

在这里插入图片描述
性质:
(1)A和A的转置的行列式相等
(2)如果行列式有两行/列元素相等或成比例,那么行列式的值为0
(3)奇数次行/列对换变换改变行列式的符号
(4)行/列倍加变换不改变行列式的值
(5)用k乘行列式,相当于将行列式中某一行或某一列的元素乘以k
(6)某一行/列的公因数可以提到外面:
在这里插入图片描述
(7)行列元素可以拆分:
在这里插入图片描述
(8)上/下三角行列式的值: 等于主对角线上元素的连乘积
(9)分块对角矩阵的值:等于主对角线上分块行列式的连乘积:
在这里插入图片描述
(10)乘法定理:
在这里插入图片描述
(11)按行展开/按列展开:
在这里插入图片描述
(12)n阶行列式的展开式有n!项。每一项是A的不同行不同列的各元素之积,即
在这里插入图片描述
其中
在这里插入图片描述
为1到n的一个一元排列,每一项前面的正负号取决于这个排列的逆序数。
(13)当i≠j时,第i行元素与第j行的代数余子式(也就是不匹配的)乘积之和为0。引入克罗内克符号:
在这里插入图片描述
则:
在这里插入图片描述
计算:
(1)用定义、性质
(2)数字型:用倍加变换,变成三角矩阵,然后求主对角线元素乘积
(3)字母型:按行/列展开、数学归纳法、递推法
伴随矩阵:
在这里插入图片描述
在这里插入图片描述
伴随矩阵性质:
在这里插入图片描述
如果|A|≠0,则称A为非奇异方阵。
例题
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.7 矩阵的秩

矩阵A的k阶子式:任取k行k列按原来的顺序组成的k阶行列式
A的秩:A中所有不为0的子式的最高阶数,记为r(A)。零矩阵的秩为0
性质:
在这里插入图片描述
求秩:
(1)利用定义
(2)行阶梯型矩阵的秩=它的非零行数
(3)如果A和B等价,那么r(A)=r(B)
(4)P,Q可逆时:r(A)=r(PA)=r(AQ)=r(PAQ)

参考文献

陈建龙,周建华,张小向,韩瑞珠,周后型.线性代数(第二版)

  • 8
    点赞
  • 80
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 以下是一些大学线性代数中的经典例题: 1. 求解线性方程组: x + 2y - z = 3 2x - y + 3z = 7 3x + y - 2z = 4 2. 求矩阵的逆: A = [1 2; 3 4] 3. 求向量的内积和外积: a = [1 2 3], b = [4 5 6] 4. 求矩阵的特征值和特征向量: A = [1 2; 2 1] 5. 求矩阵的行列式: A = [1 2 3; 4 5 6; 7 8 9] 这些例题都是大学线性代数中比较常见的例题,通过练习这些例题可以帮助学生加深对线性代数的理解和掌握。 ### 回答2: 大学线性代数中,矩阵是一个重要的概念。矩阵的代数运算和性质在解决实际问题中起到了重要作用。下面我将介绍一道经典例题。 考虑一个线性方程组: x + 2y + 3z = 6 2x + 4y + 6z = 12 3x + 6y + 9z = 18 我们可以用矩阵的形式表示这个线性方程组: Ax = b 其中,A是一个3×3的系数矩阵,x是未知向量,b是常量向量。 为了求解这个线性方程组,我们可以通过矩阵的逆来解得x。首先,我们需要计算矩阵A的逆矩阵A⁻¹。 根据矩阵的性质,若矩阵A存在逆矩阵,那么AA⁻¹=I,其中I是单位矩阵。 对于给定的矩阵A,我们可以通过高斯-约旦消元法来计算它的逆矩阵。 首先,我们将矩阵A与单位矩阵连接在一起形成一个增广矩阵,即[A | I]。 然后,我们对增广矩阵进行行变换,使得A的左半部分变为单位矩阵,并使得右半部分变为逆矩阵。 最后,我们得到了增广矩阵的右半部分,即逆矩阵A⁻¹。 对于本例中的线性方程组,经过计算,我们得到了矩阵A的逆矩阵A⁻¹为: 1 0 0 0 1 0 0 0 1 接下来,我们将逆矩阵与方程组的常量向量b相乘,即A⁻¹b,得到未知向量x的解。 经过计算,我们得到了未知向量x的解为: x = 6 y = 0 z = 0 因此,原线性方程组的解为x = 6,y = 0,z = 0。 ### 回答3: 线性代数中有一道经典例题是求解矩阵的特征值和特征向量。特征值和特征向量是在矩阵运算中非常重要的概念,它们可以帮助我们了解矩阵的特性和性质。 给定一个n阶方阵A,如果存在一个非零向量x使得Ax=kx,其中k为一个常数,则称k为矩阵A的特征值,x为对应于特征值k的特征向量。 解题思路如下: 1. 先求出矩阵A的特征多项式f(λ) = |A - λI|,其中I为单位矩阵。 2. 根据特征多项式f(λ) = 0,求出所有的特征值λ。 3. 对于每个特征值λ,代入方程(A - λI)x = 0,求解特征向量x。 举个例子: 假设有一个2阶方阵A = [[1, 2], [3, 4]],我们来求解其特征值和特征向量。 1. 求解特征多项式f(λ) = |A - λI| = |[[1-λ, 2], [3, 4-λ]]| = (1-λ)(4-λ) - 2*3 = λ^2 - 5λ - 2. 2. 令f(λ) = 0,得到特征多项式的根为λ1 = (5 + √33)/2, λ2 = (5 - √33)/2。 3. 根据(A - λI)x = 0,代入λ1得到[[1 - λ1, 2], [3, 4 - λ1]]x = 0,解这个方程组得到一个特征向量x1 = [1, (λ1 - 1)/2]。 同理,代入λ2得到[[1 - λ2, 2], [3, 4 - λ2]]x = 0,解这个方程组得到一个特征向量x2 = [1, (λ2 - 1)/2]。 因此,矩阵A的特征值为λ1 = (5 + √33)/2, λ2 = (5 - √33)/2,对应的特征向量分别为x1 = [1, (λ1 - 1)/2],x2 = [1, (λ2 - 1)/2]。 通过求解矩阵的特征值和特征向量,我们可以揭示矩阵的性质和特点,对于线性代数的学习和应用有很大帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

故人西迁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值