在自动控制原理课程中,利用折线式伯德图计算截止频率是很常见的题型,下面介绍两种做法。
对于以下传递函数:
G
(
s
)
=
50
s
2
(
s
2
+
s
+
1
)
(
10
s
+
1
)
=
G
1
(
s
)
G
2
(
s
)
G
3
(
s
)
G
4
(
s
)
G
5
(
s
)
{G(s)=\frac{50}{s^2(s^2+s+1)(10s+1)}=G_1(s)G_2(s)G_3(s)G_4(s)G_5(s)}
G(s)=s2(s2+s+1)(10s+1)50=G1(s)G2(s)G3(s)G4(s)G5(s)
其中:
G
1
(
s
)
=
50
,
比
例
环
节
{G_1(s)=50,比例环节}
G1(s)=50,比例环节
G
2
(
s
)
=
1
s
,
积
分
环
节
{G_2(s)=\frac{1}{s},积分环节}
G2(s)=s1,积分环节
G
3
(
s
)
=
1
s
,
积
分
环
节
{G_3(s)=\frac{1}{s},积分环节}
G3(s)=s1,积分环节
G
4
(
s
)
=
1
s
2
+
s
+
1
,
振
荡
环
节
,
ω
1
=
1
r
a
d
/
s
{G_4(s)=\frac{1}{s^2+s+1},振荡环节,\omega_1=1rad/s}
G4(s)=s2+s+11,振荡环节,ω1=1rad/s
G
5
(
s
)
=
1
10
s
+
1
,
延
时
环
节
,
ω
2
=
0.1
r
a
d
/
s
{G_5(s)=\frac{1}{10s+1},延时环节,\omega_2=0.1rad/s}
G5(s)=10s+11,延时环节,ω2=0.1rad/s
首先画出伯德图的草图:
在卡西欧计算器上,利用未经化简的
L
(
ω
)
{L(\omega)}
L(ω)求解的结果是
ω
c
=
1.4193
r
a
d
/
s
{\omega_c=1.4193rad/s}
ωc=1.4193rad/s,该值作为本文的真值。
方法一:利用 L ( ω ) {L(\omega)} L(ω)的分段函数特点
利用[1]中的方法(具体思路不再重复),可以求出转折频率的估计值:
(1)假设
ω
c
<
0.1
r
a
d
/
s
{\omega_c<0.1rad/s}
ωc<0.1rad/s,只考虑比例和积分环节,则有
L
(
ω
)
=
20
l
g
(
50
)
−
40
l
g
(
ω
)
{L(\omega)=20lg(50)-40lg(\omega)}
L(ω)=20lg(50)−40lg(ω)
令
L
(
ω
)
=
0
{L(\omega)=0}
L(ω)=0,解得
ω
=
50
{\omega=\sqrt{50}}
ω=50,不符合假设,舍去。
(2)假设
0.1
r
a
d
/
s
<
ω
c
<
1
r
a
d
/
s
{0.1rad/s<\omega_c<1rad/s}
0.1rad/s<ωc<1rad/s,不考虑振荡环节,则有
L
(
ω
)
=
20
l
g
(
50
)
−
40
l
g
(
ω
)
−
20
l
g
(
10
ω
)
{L(\omega)=20lg(50)-40lg(\omega)-20lg(10\omega)}
L(ω)=20lg(50)−40lg(ω)−20lg(10ω)
令
L
(
ω
)
=
0
{L(\omega)=0}
L(ω)=0,解得
ω
=
5
3
{\omega=\sqrt[3]{5}}
ω=35,不符合假设,舍去。
(3)假设
ω
c
>
1
r
a
d
/
s
{\omega_c>1rad/s}
ωc>1rad/s,则有
L
(
ω
)
=
20
l
g
(
50
)
−
40
l
g
(
ω
)
−
20
l
g
(
10
ω
)
−
40
l
g
(
ω
)
{L(\omega)=20lg(50)-40lg(\omega)-20lg(10\omega)-40lg(\omega)}
L(ω)=20lg(50)−40lg(ω)−20lg(10ω)−40lg(ω)
令
L
(
ω
)
=
0
{L(\omega)=0}
L(ω)=0,解得
ω
=
5
5
=
1.3797
r
a
d
/
s
{\omega=\sqrt[5]{5}=1.3797rad/s}
ω=55=1.3797rad/s,符合假设,是正确的截止频率。
方法二:利用 ω {\omega} ω靠近零处的特点
当
ω
{\omega}
ω很小时,除了积分环节,其他环节都可以忽略,因此:
L
(
ω
)
=
20
l
g
(
50
)
−
40
l
g
(
ω
)
{L(\omega)=20lg(50)-40lg(\omega)}
L(ω)=20lg(50)−40lg(ω)
取
ω
=
0.01
r
a
d
/
s
{\omega=0.01rad/s}
ω=0.01rad/s,有
L
(
0.01
)
=
20
l
g
(
50
)
+
80
{L(0.01)=20lg(50)+80}
L(0.01)=20lg(50)+80
从
ω
=
0.01
r
a
d
/
s
{\omega=0.01rad/s}
ω=0.01rad/s开始,
L
(
ω
)
{L(\omega)}
L(ω)不断下降,因此可以把
ω
c
{\omega_c}
ωc看作是下降过程中的一点。从
ω
=
0.01
r
a
d
/
s
{\omega=0.01rad/s}
ω=0.01rad/s处下降到
ω
c
{\omega_c}
ωc处,
L
(
ω
)
{L(\omega)}
L(ω)首先经过了
ω
=
0.1
r
a
d
/
s
{\omega=0.1rad/s}
ω=0.1rad/s,然后经过了
ω
=
1
r
a
d
/
s
{\omega=1rad/s}
ω=1rad/s,由此画出下面的阶梯图:
对于图中折线的斜率,例如-40dB/dec,表示
ω
{\omega}
ω每增大10倍,
L
(
ω
)
{L(\omega)}
L(ω)就减小40,其余的同理。
因此,可以直接写出
L
(
ω
c
)
{L(\omega_c)}
L(ωc)的表达式:
L
(
ω
c
)
=
L
(
0.01
)
−
40
−
60
−
100
l
g
(
ω
c
)
−
l
g
(
1
)
l
g
(
10
)
−
l
g
(
1
)
=
0
{L(\omega_c)=L(0.01)-40-60-100\frac{lg(\omega_c)-lg(1)}{lg(10)-lg(1)}=0}
L(ωc)=L(0.01)−40−60−100lg(10)−lg(1)lg(ωc)−lg(1)=0
前面很好理解,最后一项是什么呢?不妨将-100dB/dec的直线延伸到
ω
=
10
r
a
d
/
s
{\omega=10rad/s}
ω=10rad/s看看:
从
ω
=
1
r
a
d
/
s
{\omega=1rad/s}
ω=1rad/s处到
ω
=
10
r
a
d
/
s
{\omega=10rad/s}
ω=10rad/s处,
L
(
ω
)
{L(\omega)}
L(ω)减小了10。而图中的红色和黄色两个三角形是相似的,假设从
ω
=
1
r
a
d
/
s
{\omega=1rad/s}
ω=1rad/s处到
ω
c
{\omega_c}
ωc处下降了
x
{x}
x,根据比例关系很容易有:
l
g
(
ω
c
)
−
l
g
(
1
)
l
g
(
10
)
−
l
g
(
1
)
=
x
100
{\frac{lg(\omega_c)-lg(1)}{lg(10)-lg(1)}=\frac{x}{100}}
lg(10)−lg(1)lg(ωc)−lg(1)=100x
用这种方法求出
ω
c
=
1
0
l
g
(
5
)
5
=
5
5
=
1.3797
r
a
d
/
s
{\omega_c=10^\frac{lg(5)}{5}=\sqrt[5]{5}=1.3797rad/s}
ωc=105lg(5)=55=1.3797rad/s
与方法一的结论是相同的。
补充:
根据评论区carrot@的建议,最后“从
ω
=
1
r
a
d
/
s
{\omega=1rad/s}
ω=1rad/s处到
ω
=
ω
c
r
a
d
/
s
{\omega=\omega_c rad/s}
ω=ωcrad/s处”也可以这么做:
假设
w
=
a
w=a
w=a时,
L
(
a
)
=
x
L(a)=x
L(a)=x,
ω
c
\omega_c
ωc在
a
a
a的右侧。用d表示对数坐标系下横坐标到原点的长度,则有
d
1
=
l
g
(
a
)
,
d
2
=
l
g
(
ω
c
)
d_1=lg(a), d_2=lg(\omega_c)
d1=lg(a),d2=lg(ωc)。以
d
d
d为自变量,可以写出直线
l
l
l的方程如图。
如上,求出
y
=
0
y=0
y=0时的
ω
c
\omega_c
ωc表达式,然后代入
x
x
x即可。
总结
从结果来看,两种方法得到的结论是相同的,且都和计算器求解的结果比较接近,但是方法二的求解过程明显更简单,做题更节省时间。
参考文献
[1] https://wenku.baidu.com/view/f6abcd52dd36a32d73758182.html