第一个计算机漏洞实际上是一个 bug。1947 年,一只飞蛾飞进哈佛大学的一台计算机,导致计算中断。当工程师打开计算机机箱时,他们很快就发现了导致问题的 bug。如今,bug 不太可能爬进我们的计算机并破坏计算流程。但是,原理保持不变。
软件 bug 是一种小的、难以察觉的错误,它会潜入我们的软件项目并导致问题。不幸的是,与发现飞蛾不同,软件 bug 更微妙,更难以检测。在大多数情况下,软件开发人员通过在他们的代码中犯一些乍一看无害的小错误来创建这些 bug。这就是存在许多帮助程序员调试代码的工具和方法的原因。
在本文中,我将深入探讨调试深度学习模型的主题并解释如何做到这一点。
什么是深度学习模型调试?
在软件调试中,程序员遵循一组预定义的规则,这些规则使他们能够找到问题的根源。从某种意义上说,它类似于沿着汉塞尔和格莱特创造的白色鹅卵石路径。在软件调试中,技巧在于将白色鹅卵石放在何处,以便可以轻松检测到错误。
然而,机器学习是不同的。我们不只是解决一个定义明确的任务,该任务对于给定的输入具有确定性的输出。我们正在训练一个模型,该模型捕获给定域中的数据结构,以便算法学习识别可用于预测未来示例行为的模式。模型的实现可能没有任何软件错误,但模型可能会有错误。例如,考虑一个使用错误预处理的数据进行训练的模型。显然,这是一个严重的限制,需要重新训练模型。但是,从软件的角度来看,模型没有任何问题,它对于提供的输入正常工作。
NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - Three.js虚拟轴心开发包 - 3D模型在线减面 -