CLIP模型微调简明指南

CLIP 等多模态模型通过将图像等复杂对象与易于理解、生成和解析的文本描述联系起来,开辟了新的 AI 用例。但是,像 CLIP 这样的现成模型可能无法代表特定领域中常见的数据,在这种情况下,可能需要进行微调以使模型适应该领域。

这篇文章展示了如何根据《纽约客》杂志的卡通图像和这些卡通的笑话标题微调 CLIP 模型。它基于 capcon,这是一个与《纽约客》卡通比赛相关的各种任务的数据集。其中一项任务是拍摄一张卡通图像并从可能的标题列表中预测合适的标题。让我们看看如何为这项任务微调 CLIP。

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - AI模型在线查看 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割 

1、数据

数据托管在 gs://datachain-demo/newyorker_caption_contest 上并公开提供,它包含两个部分:

  • images:图像,一个 JPEG 文件文件夹,每个文件代表一张卡通图像。
  • new_yorker_meta.parquet:包含图像元数据的 parquet 文件,包括图像的多种标题选择和正确的标题选择。

为了处理这些数据,我们将使用开源库 datachain,它有助于将此类非结构化数据整理成更结构化的格式(免责声明:我帮助开发了 datachain)。本文中使用的所有代码都可以在 GitHub 上的&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值