联合概率、边际概率、条件概率

连个概率,边际概率,条件概率,似曾相识,之间的关系在推导中很重要!

某离散分布:

这里写图片描述

联合概率、边际概率、条件概率的关系:

这里写图片描述 
其中, 
Pr(X=x, Y=y)为“XY的联合概率”; 
Pr(X=x)为“X的边际概率”; 
Pr(X=x | Y=y)为“X基于Y的条件概率”; 
Pr(Y=y)为“Y的边际概率”;

从上式子中可以看到: 
Pr(X=x, Y=y) = Pr(X=x | Y=y) * Pr(Y=y) 
即:“XY的联合概率”=“X基于Y的条件概率”乘以“Y的边际概率” 
这个就是联合概率、边际概率、条件概率之间的转换计算公式。

前面表述的是离散分布,对于连续分布,也差不多。 
只需要将“累加”换成“积分”。 这里写图片描述

转自:https://blog.csdn.net/libing_zeng/article/details/74625849

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值