连个概率,边际概率,条件概率,似曾相识,之间的关系在推导中很重要!
某离散分布:
联合概率、边际概率、条件概率的关系:
其中,
Pr(X=x, Y=y)为“XY的联合概率”;
Pr(X=x)为“X的边际概率”;
Pr(X=x | Y=y)为“X基于Y的条件概率”;
Pr(Y=y)为“Y的边际概率”;
从上式子中可以看到:
Pr(X=x, Y=y) = Pr(X=x | Y=y) * Pr(Y=y)
即:“XY的联合概率”=“X基于Y的条件概率”乘以“Y的边际概率”
这个就是联合概率、边际概率、条件概率之间的转换计算公式。
前面表述的是离散分布,对于连续分布,也差不多。
只需要将“累加”换成“积分”。
转自:https://blog.csdn.net/libing_zeng/article/details/74625849