MIT线性代数第15讲子空间投影记录

直线投影

p = x a p = x a p=xa , x x x 为标量

a T a^T aT e e e 垂直所以  a T ∗ e = a T ( b − p ) = a T ( b − x a ) = 0 a^T *e = a^T(b-p)=a^T(b-xa)=0 aTe=aT(bp)=aT(bxa)=0
x = a T ∗ b / ( a T ∗ a ) x = a^T*b/(a^T*a) x=aTb/(aTa)
p = a x = a ∗ a T ∗ b / ( a T ∗ a ) p = ax = a *a^T*b/(a^T*a) p=ax=aaTb/(aTa)
所以 a ∗ a T / ( a T ∗ a ) a *a^T/(a^T*a) aaT/(aTa) 为投影向量

矩阵投影

A x = b Ax=b Ax=b 无解时,也就是说 b b b 不在 A A A 的列空间中,此时可以使用 b b b 向列空间进行投影;设投影矩阵为 P P P P = A x ^ P = A\hat{x} P=Ax^ 与向量投影类似, e = b − A x ^ e = b-A\hat{x} e=bAx^ e e e为偏差向量, a 1 T , a 2 T a_1^T, a_2^T a1T,a2T为构成列空间的基向量 
a 1 T ( b − A x ^ ) = 0 , a 2 T ( b − A x ^ ) = 0 a_1^T(b-A\hat{x})=0, a_2^T(b-A\hat{x})=0 a1T(bAx^)=0,a2T(bAx^)=0
∣ a 1 T a 2 T ∣ ∗ ( b − A x ^ ) = 0 \begin{vmatrix} a1^T \\ a2^T \end{vmatrix}* (b-A\hat{x})=0 a1Ta2T(bAx^)=0
A T ( b − A x ^ ) = 0 , A T A x ^ = A T b , x ^ = ( A T A ) − 1 A T b A^T (b-A\hat{x})=0,A^TA\hat{x} = A^Tb , \hat{x}= (A^TA)^-1A^Tb AT(bAx^)=0ATAx^=ATbx^=(ATA)1ATb
P = A x ^ = A T ( A T A ) − 1 A T b P = A\hat{x} =A^T (A^TA)^{-1}A^Tb P=Ax^=AT(ATA)1ATb
投影矩阵 P P P满足  P T = P , P 2 = P P^T = P, P^2=P PT=P,P2=P
列空间的 A T A^T AT的零空间是垂直的,由列空间获取的投影矩阵可以得到 A T A^T AT零空间的投影矩阵为 ( I − P ) (I-P) (IP)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值