线性代数之相似矩阵与二次型基础点

                                                          线性代数之相似矩阵与二次型基础点

 向量的内积

假设有n维向量如下:

 称为向量x,y的内积。

注:内积类似于行列式,是向量间的运算,实际上是一个数。

几点注意:

  • 如果x和y都是列向量,则
  • [x,y] = [y,x] (乘法交换律)
  • [λx,y] =λ[x,y]= [x, λy] (提取公因子、乘法结合律)
  • [x+y,z] = [x,z]+[y,z] (乘法分配律)
     

向量的长度

 则||x||称为n维向量x的长度(或范数)。

特别的当||x||的长度为1时称为单位向量

向量夹角

 称为n维向量x、y的夹角。

特别的[x,y]=0时,向量x和y正交

显然对于向量组来说若n维向量 是一组两两正交的非零向量,则 线性无关。

规范正交基

设n维向量向量空间V(V⊂Rn )的基,如果 两两正交且都是单位向量,则 称之为向量空间V的一个规范正交基

很显然向量空间V里的任意向量a均可以由线性表示,其表达式为:

施密特正交化

如一种由线性无关的向量组 构建成同维的两两正交的向量组的一种方法。

构建步骤:

Step1:构建两两正交的向量组

Step2:对单位化后的即是所求

上述过程又叫做对线性无关的向量组(向量空间V里的一个基)的规范正交化

正交矩阵

n阶矩阵A满足如下条件

则称为正交矩阵,或简称为正交阵。向量方式表示见下:

可简写成    这里不难发现i和j相当的地方元素皆为1,不等的地方都是0,即对于单位矩阵E。

进而得到结论:方阵A是正交阵的充要条件是A的列向量都是单位向量,且两两相交。

(将方阵正交阵的判定条件转为每列是否是单位向量、两两向量是否正交)。

几点性质:

1 如果A是正交矩阵,那么  也都是正交阵且|A|=1或者|A|=-1。

2 如果A和B都是正交矩阵,那么AB也是正交矩阵。

 特征值与特征向量

针对n阶的矩阵A,如果数λ  和n维非零列向量x有如下关系:

Ax=λ  x 则称λ  是矩阵A的特征值,非零向量x称为该特征值对应  的特征向量

上式子可变换成 (A-λE)X=0  ,由齐次方程组的性质则知 |A-λE  |=0

特征方程与特征多项式

由特征值的定义结合齐次方程组的性质则知 |A-λE  |=0,即有如下展开式:

这个以λ  为未知数的一元n次方程叫做矩阵A的特征方程,

|A-λE  |是λ  的n次多项式,记作f(λ  ),称为矩阵A的特征多项式。

这里不难发现:

即特征值之和等于行列式对角线的和,特征值的积等于行列式的值。

相似矩阵

设A,B都是n阶矩阵,若有可逆矩阵P使得

则称B是A的相似矩阵或者A与B相似。对A进行运算称为对A进行相似变换。可逆矩阵P称为A变成B的相似变换矩阵。

若n阶矩阵A与B相似,则A与B的特征多项式相同,A与B的特征值也相同。

如果n阶矩阵A与对角阵  相似,

  即是A的n个特征值。

矩阵对角化

对n阶矩阵A找一个相似变换矩阵P使得  的过程叫做矩阵的对角化。

n阶矩阵A与对角阵相似(A能对角化)的充要条件是A有n个线性无关的特征向量。

如果n阶矩阵A的n个特征值互不相等,则A与对角型相似。

对称矩阵对角化

  • 如果是对称矩阵A的两个特征值,  是对应的特征向量,若  则  正交。
  • 设A为n阶对称阵,则必有正交阵P使得 其中⋀  是以A的n个特征值为对角元的对角阵。
  • 设A为m阶对称阵,λ是A的特征方程的k重根,则矩阵A-λE的秩R(A-λE)为n-k,对应的特征值λ恰有k个线性无关的特征向量。

二次型

含n个变量的二次齐次函数,表达式见下

称为二次型

任给一个二次型就能唯一确定一个对称阵。反之任给一个对称阵也能唯一确定一个二次型。对称阵A叫做二次型f的矩阵,也把f叫做对称阵A的二次型。对称阵A的秩即叫做二次型f的秩

二次型的标准形

仅含有平方项的二次型称为二次型的标准形。

矩阵合同

对于n阶矩阵A和B,如果有可逆矩阵C使得则称对称阵A与B合同

任给二次型  总有正交变换x=Py,使得f化为标准形

  其中 是矩阵的特征值。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShenLiang2025

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值