【线性代数】相似矩阵及二次型

方阵的特征值与特征向量

A A A n n n阶方阵,如果对于数 λ \lambda λ,存在非零向量 α \alpha α,使得 A α = λ α ( α ≠ 0 ) A \alpha=\lambda \alpha\quad (\alpha \ne \boldsymbol{0}) Aα=λα(α=0)成立,则称 λ \lambda λ A A A的特征值, α \alpha α A A A的对应于 λ \lambda λ的特征向量

性质:

  • 不同特征值的特征向量线性无关
  • 任取特征值 λ \lambda λ,线性无关的特征向量的个数 ≤ λ \leq \lambda λ的重数
  • A A A的特征值为 λ 1 , ⋯   , λ n \lambda_{1},\cdots,\lambda_{n} λ1,,λn,则 { ∣ A ∣ = λ 1 , ⋯   , λ n = ∏ i = 1 n λ i t r ( A ) = ∑ i = 1 n a i i = ∑ i = 1 n λ i \begin{cases}|A|=\lambda_{1},\cdots,\lambda_{n}=\prod\limits_{i=1}^{n}\lambda_{i}\\tr(A)=\sum\limits^{n}_{i=1}a_{ii}=\sum\limits^{n}_{i=1} \lambda_{i}\end{cases} A=λ1,,λn=i=1nλitr(A)=i=1naii=i=1nλi

步骤:

  1. ∣ λ E − A ∣ = O | \lambda E-A|=O λEA=O,解得 λ 1 , ⋯   , λ n \lambda_{1},\cdots,\lambda_{n} λ1,,λn
  2. [ λ i E − A ] X = 0 [\lambda_{i}E-A]X=0 [λiEA]X=0的解,得到特征向量

例1:求矩阵 A = ( − 2 1 1 0 2 0 − 4 1 3 ) A=\begin{pmatrix}-2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3\end{pmatrix} A= 204121103 的特征值和特征向量
∣ λ E − A ∣ = ∣ λ + 2 − 1 − 1 0 λ − 2 0 4 − 1 λ − 3 ∣ = ( − 1 ) 2 + 2 ( λ − 2 ) ∣ λ + 2 − 1 4 λ − 3 ∣ = ( λ − 2 ) 2 ( λ + 1 ) = 0 \begin{aligned}|\lambda E-A|&=\begin{vmatrix}\lambda+2&-1&-1\\0&\lambda -2&0\\4&-1&\lambda-3\end{vmatrix}\\&=(-1)^{2+2}(\lambda-2)\begin{vmatrix}\lambda+2&-1\\4&\lambda-3\end{vmatrix}\\&=(\lambda-2)^2(\lambda+1)\\&=0\end{aligned} λEA= λ+2041λ2110λ3 =(1)2+2(λ2) λ+241λ3 =(λ2)2(λ+1)=0
解得 λ 1 = λ 2 = 2 \lambda_{1}=\lambda_{2}=2 λ1=λ2=2
λ 1 = λ 2 = 2 \lambda_{1}=\lambda_{2}=2 λ1=λ2=2
( 2 E − A ) = ( 4 − 1 − 1 0 0 0 4 − 1 − 1 ) → ( 1 − 1 4 − 1 4 0 0 0 0 0 0 ) \begin{aligned}(2E-A)&=\begin{pmatrix}4 & -1 & -1 \\ 0 & 0 & 0 \\ 4 & -1 & -1\end{pmatrix}\\\rightarrow& \begin{pmatrix}1 & - \frac{1}{4} & - \frac{1}{4} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{pmatrix}\end{aligned} (2EA)= 404101101 10041004100
解得 α 1 = ( 1 4 , 1 , 0 ) T , α 2 = ( 1 4 , 0 , 1 ) T \alpha_{1}=(\frac{1}{4},1,0)^T,\alpha_{2}=(\frac{1}{4},0,1)^T α1=(41,1,0)T,α2=(41,0,1)T
λ 3 = − 1 \lambda_{3}=-1 λ3=1
( − E − A ) = ( 1 − 1 − 1 0 − 3 0 4 − 1 − 4 ) → ( 1 0 − 1 0 1 0 0 0 0 ) \begin{aligned}(-E-A)&=\begin{pmatrix}1 & -1 & -1 \\ 0 & -3 & 0 \\ 4 & -1 & -4\end{pmatrix}\\\rightarrow&\begin{pmatrix}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{pmatrix}\end{aligned} (EA)= 104131104 100010100
解得 α 3 = ( 1 , 0 , 1 ) T \alpha_{3}=(1,0,1)^T α3=(1,0,1)T

λ 1 = λ 2 = 2 \lambda_1=\lambda_2=2 λ1=λ2=2时,特征向量为 k 1 α 1 + k 2 α 2 ( k 1 , k 2 k_{1}\alpha_1+k_{2}\alpha_{2}\quad(k_1,k_2 k1α1+k2α2(k1,k2不同时为 0 ) 0) 0)
λ 3 = − 1 \lambda_{3}=-1 λ3=1时,特征向量为 k 3 α 3 ( k 3 k_3\alpha_3\quad(k_{3} k3α3(k3为非零常数 ) ) )

例2:设 λ \lambda λ是方阵 A A A的特征值,证明

  • λ 2 \lambda^2 λ2 A 2 A^{2} A2的特征值
    ∵ λ \because \lambda λ A A A特征值
    ∃ α ≠ 0 \exists \alpha \ne \boldsymbol{0} α=0,使 A α = λ α A \alpha=\lambda \alpha Aα=λα
    α \alpha α λ \lambda λ的特征向量
    A 2 α = A ( A α ) = λ A α = λ 2 α A^{2}\alpha=A(A \alpha)=\lambda A \alpha=\lambda^{2}\alpha A2α=A(Aα)=λAα=λ2α
    λ 2 \lambda^2 λ2 A 2 A^2 A2为特征值,且 α \alpha α λ 2 \lambda^2 λ2对应的特征向量
  • A A A可逆时, 1 λ \frac{1}{\lambda} λ1 A − 1 A^{-1} A1的特征值
    ∵ A \because A A可逆
    A α = λ α A \alpha=\lambda \alpha Aα=λα左乘 A − 1 A^{-1} A1
    α = A − 1 λ α = λ A − 1 α \alpha=A^{-1}\lambda \alpha=\lambda A^{-1}\alpha α=A1λα=λA1α
    A − 1 α = 1 λ α A^{-1} \alpha=\frac{1}{\lambda}\alpha A1α=λ1α
    1 λ \frac{1}{\lambda} λ1 A − 1 A^{-1} A1的特征值

推广:

A A A A − 1 A^-1 A1 f ( A ) f(A) f(A) A − 1 A^{-1} A1 A ∗ A^* A P − 1 A P P^{-1}AP P1AP
λ \lambda λ 1 λ \frac{1}{\lambda} λ1 f ( λ ) f(\lambda) f(λ) λ \lambda λ ∣ A ∣ λ \frac{|A|}{\lambda} λA λ \lambda λ
α \alpha α α \alpha α α \alpha α 无明显规律 α \alpha α P − 1 α P^{-1}\alpha P1α

其中

  • f ( A ) f(A) f(A) A A A的多项式,例如 A 3 + 2 A 2 + 6 E A^{3}+2A^{2}+6E A3+2A2+6E,则对应 f ( λ ) = λ 3 + 2 λ 2 + 6 f(\lambda)=\lambda^3+2\lambda^{2}+6 f(λ)=λ3+2λ2+6
  • P − 1 A P P^{-1}AP P1AP表示 A A A的相似矩阵

例3:设 3 3 3阶矩阵 A A A的特征值为 1 , − 1 , 2 1,-1,2 1,1,2,求 A ∗ + 3 A − 2 E A^*+3A-2E A+3A2E的特征值
∣ A ∣ = − 2 |A|=-2 A=2
A A A的特征值为 1 1 1时, A ∗ A^* A的特征值为 − 2

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值