Introduction to Robotics :Mechanics and Control (Chapter 3)

3.2 Imagine an arm like the PUMA 560, except that joint 3 is replaced with a pris-matic joint. Assume the prismatic joint slides along the direction of \mathbf{\hat{X}_1} in Fig.3.18;however, there is still an offset equivalent to \mathbf{d_3} to be accounted for. Make any additional assumptions needed. Derive the kinematic equations.

\begin{array}{|c|c|c|c|} \hline \alpha_{i-1} & a_{i-1} & d_{i} & \theta_{i} \\ \hline 0 & 0 & 0 & \theta_{1} \\ -90^{\circ} & 0 & d_{2} & \theta_{2} \\ 90^{\circ} & 0 & d_{3} & 180^{\circ} \\ 0 & a_{3} & d_{4} & \theta_{4} \\ 90 & 0 & 0 & \theta_{5} \\ -90 & 0 & 0 & \theta_{6} \\ \hline \end{array}

{ }_{1}^{0} T=\left[\begin{array}{cccc} C_{1} & -S_{1} & 0 & 0 \\ S_{1} & C_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]             { }_{2}^{1} T=\left[\begin{array}{cccc} C_{2} & -S_{2} & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ -S_{2} & -C_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]{ }_{3}^{2} T=\left[\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -d_{3} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]      { }_{4}^{3} T=\left[\begin{array}{cccc} C_{4} & -S_{4} & 0 & a_{3} \\ S_{4} & C_{4} & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{array}\right]

 { }_{5}^{4} T=\left[\begin{array}{ccrc} C_{5} & -S_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ S_{5} & C_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]         { }_{6}^{5} T=\left[\begin{array}{ccrc} C_{6} & -S_{6} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -S_{6} &- C_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]

\begin{aligned}&\because { }_{6}^{0} T={ }_{3}^{0} T_{6}^{3} T \\ &{ }_{3}^{0} T=\left[\begin{array}{cccc} -C_{1} C_{2} & S_{1} & C_{1} S_{2} & -d_{2} S_{1}+d_{3} C_{1} S_{2} \\ -S_{1} C_{2} & -C_{1} & S_{1} S_{2} & d_{2} C_{1}+d_{3} S_{1} S_{2} \\ S_{2} & 0 & C_{2} & d_{3} C_{2} \\ 0 & 0 & 0 & 1 \end{array}\right] \\ &{ }_{6}^{3} T=\left[\begin{array}{cccc} C_{4} C_{5} C_{6}-S_{4} S_{6} & -\left(C_{4} C_{5} S_{6}+S_{4} C_{6}\right) & -C_{4} S_{5} & a_{3} \\ \left(S_{4} C_{5} C_{6}+C_{4} S_{6}\right) & -S_{4} C_{5} S_{6}+C_{4} C_{6} & -S_{4} S_{5} & 0 \\ S_{5} C_{6} & -S_{5} S_{6} & C_{5} & d_{4} \\ 0 & 0 & 0 & 1 \end{array}\right] \\ &\therefore { }_{6}^{0} T=\left[\begin{array}{cccc} R_{11} & R_{12} & R_{13} & P_{x} \\ R_{21} & R_{22} & R_{23} & P_{y} \\ R_{31} & R_{32} & R_{33} & P_{z} \\ 0 & 0 & 0 & 1 \end{array}\right] \end{aligned}

where:

\begin{aligned} &R_{11}=-C_{1} C_{2} C_{4} C_{5} C_{6}+C_{1} C_{2} S_{4} S_{6}+S_{1} S_{4} C_{5} C_{6}+S_{1} C_{4} S_{6}+C_{1} S_{2} S_{5} S_{6} \\ &R_{12}=C_{1} C_{2} C_{4} C_{5} S_{6}+C_{1} C_{2} S_{4} C_{6}-S_{1} S_{4} C_{5} S_{6}+S_{1} C_{4} C_{6}-S_{1} S_{2} S_{5} S_{6} \\ &R_{13}=C_{1} C_{2} C_{4} S_{5}-S_{1} S_{4} S_{5}+C_{1} S_{2} C_{5} \\ &R_{21}=-S_{1} C_{2} C_{4} C_{5} C_{6}+S_{1} C_{2} S_{4} S_{6}-C_{1} S_{4} C_{5} C_{6}-C_{1} C_{4} S_{6}+S_{1} S_{2} S_{5} C_{6} \\ &R_{22}=S_{1} C_{2} C_{4} C_{5} S_{6}+S_{1} C_{2} S_{4} C_{6}+C_{1} S_{4} C_{5} S_{6}-C_{1} C_{4} C_{6}-S_{1} S_{2} S_{5} S_{6} \\ &R_{23}=S_{1} C_{2} C_{4} S_{5}+C_{1} S_{4} S_{5}+S_{1} S_{2} C_{5} \\ &R_{31}=S_{2} C_{4} C_{5} C_{6}-S_{2} S_{4} S_{6}+C_{2} S_{5} C_{6} \\ &R_{32}=-S_{2} C_{4} C_{5} S_{6}-S_{2} S_{4} C_{6}-C_{2} S_{5} S_{6} \\ &R_{33}=-S_{2} C_{4} C_{5}+C_{2} C_{5} \\ \end{aligned}

\begin{aligned} &P_{x}=-d_{2} S_{1}+\left(d_{3}+d_{4}\right) C_{1} S_{2}-a_{3} C_{1} C_{2} \\ &P_{y}=d_{2} C_{1}+\left(d_{3}+d_{4}\right) S_{1} S_{2}-a_{3} S_{1} C_{2} \\ &P_{2}=\left(d_{3}+d_{4}\right) C_{2}+a_{3} S_{2} \end{aligned}

3.8 In Fig.3.31, the location of the tool, \mathbf{^W_TT}, is not accurately known. Using force control, the robot feels around with the tool tip until it inserts it into the socket (or Goal) at location \boldsymbol{^S_GT}. Once in this“calibration" configuration (in which{G} and {T} are coincident), the position of the robot, \mathbf{^B_WT}, is figured out by read-ing the joint angle sensors and computing the kinematics. Assuming \mathbf{^B_ST} and \mathbf{^S_GT} are known, give the transform equation to compute the unknown tool frame, \mathbf{^W_TT}.

When {G}={T}, we have:

 { }_{W}^{B} T_{T}^{W} T={ }_{S}^{B} T_{G}^{S} T

so: 

 \quad{ }_{T}^{W} T={ }_{W}^{B} T^{-1}{ }_{S}^{B} T_{G}^{S} T

3.9 For the two-link manipulator shown in Fig. 3.32(a), the link-transformationmatrices, \mathbf{^0_1T} and \mathbf{^1_2T}, were constructed. Their product is

\boldsymbol{​{ }_{2}^{0} T=\left[\begin{array}{cccc} c \theta_{1} c \theta_{2} & -c \theta_{1} s \theta_{2} & s \theta_{1} & l_{1} c \theta_{1} \\ s \theta_{1} c \theta_{2} & -s \theta_{1} s \theta_{2} & -c \theta_{1} & l_{1} s \theta_{1} \\ s \theta_{2} & c \theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]}

The link-frame assignments used are indicated in Fig.3.32(b). Note that frame {0} is coincident with frame {1} when \mathbf{\theta_1=0}. The length of the second link is \mathbf{l_2}. Find an expression for the vector \mathbf{^0P_{tip}}, which locates the tip of the arm relative to the {0} frame.

\begin{aligned} &\because { }^{0} P_{T I P}={ }_{2}^{0} T^{2} P_{T I P} ;{ }^{2} P_{T I P}=\left[\begin{array}{c} L_{2} \\ 0 \\ 0 \end{array}\right] \\ &\therefore { }^{0} P_{T I P}=\left[\begin{array}{cccc} C_{1} C_{2} & -C_{1} S_{2} & S_{1} & L_{1} C_{1} \\ S_{1} C_{2} & -S_{1} S_{2} & -C_{1} & L_{1} S_{1} \\ S_{2} & C_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]\left[\begin{array}{c} L_{2} \\ 0 \\ 0 \\ 1 \end{array}\right] \\ &\quad\quad\quad=\left[\begin{array}{c} L_{1} C_{1}+L_{2} C_{1} C_{2} \\ L_{1} S_{1}+L_{2} S_{1} C_{2} \\ L_{2} S_{2} \end{array}\right] \end{aligned}

3.16 Assign link frames to the R P R planar robot shown in Fig. 3.36, and give the linkage parameters.

 \begin{array}{ccc} a_{1}=d_1 & a_{2}=0 & a_{3}=0 \\ \alpha_{2}=90^{\circ} & \alpha_{2}=-90^{\circ} & \alpha_{3}=0^{\circ}\\ d_{1}=0 &d_{2}=-d_2 & d_{3}=0 \\ \theta_{1}=\theta_1& \theta_{2}=0^{\circ} & \theta_{3}=-\theta_3 \end{array}

3.25 A certain human leg has the following dimensions (in cm): femur length =500, shank length = 400, ankle-to-heel distance = 50, ankle-to-toe distance = 150.For the leg shown in Fig.3.44, the three joint angles,\mathbf{ \Theta = (\theta_{hip}, \theta_{knee}. \theta_{ankle})}, are zero when the leg is vertical.

a) Show the attachment of link frames on the leg.

b) Give values for the link parameters, assuming the frame origins are coplanar.

\theta_1=\theta_2=\theta_3=0\\ d_1=500,d_2=400,d_3=50,d_4=150 

c) Compute the stride length, that is the distance along the ground from toe contact-point to heel contact-point, using the joint vectors \mathbf{\Theta_{toe-contant}=(-4.15^{\circ},-38.39^{\circ},-2.57^{\circ})} and \mathbf{\Theta_{heel-contant}=(-9.64^{\circ},-19.9^{\circ},-31.8^{\circ})} and assuming that the heel contact-point, the ankle joint, and the toe contact-point are collinear.

 

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

葱花   

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值