Introduction to Robotics 总结1~6

机器人学中经典教材 《Introduction to Robotics: Mechanics and Control》,也就是John Craig的中文版《机器人学导论》,刚来实验室的时候,就发现师兄们人手一本了,某些章节自己啃也是有点难度的,之前在 Youtube 上看完了斯坦福 Oussama Khatib 教授的视频Introduction to Robotics,他们上课使用的教材就是这本,一共十六篇lecture,讲解也是很通俗易懂,涵盖了机器人坐标变化、D-H参数建模、动力学、运动学、PD、PID控制、力控制等基本理论。

上交大佬曾今说过:" 如果你把这本书的内容掌握了,就已经超过实验室绝大多数师兄师姐了。然而,真正把教材啃下来的并不多。所以,我在这里要换个说法了,如果你把这本书的内容掌握了,就可以胜任国内绝大多数机器人公司的开发工作了。" https://qiu6401.gitbook.io/how-to-learn-robotics/gettingstarted

这里对十六篇讲座的基本内容做了个简单的概括,可以根据需求快速的找到对应的内容。

The first lecture:

  • [40:50]:So if you have a velocity and omega at the center of mass,and you can write the energy,the kinetic energy,associated with this moving mass and inertia associated with the rigid.And simply by adding the kinetic energy of these different link,you have the total kinetic energy of the system.So the mass matrix will become a very simple form of the Jacobian,so that's why I'm going to insist on your understanding of the Jacobian,once you understand the Jacobian,,you can scale the Jacobian with the masses and the inetials get your dynamics.So going to dynamics is going to be very simple if after you really undertand the Jacobian.
  • [43:54]:Task-Oriented Control: Described as how to move the hand to this location without really focusing on how each of the joint is going to move.And this concept can be captured by simply thinking about total robot as if the robot was attracted to move the goal position.This is similiar to the way a human operate just like you are not thinking about how the joints of the body are moving,you are just moving the hand by applying these forces to move the hand to the goal position.So it's like holding the hand and pulling it down to the goal.第一篇lecture就是对课程的一个总结,其实就是这十六篇的学习重点:一个是雅可比矩阵的理解和计算;另一个就是机器人的控制问题,包括PD control和force control等等话题。出现在视频中的时间为[40:50]和[43:54]。

The second lecture:

通篇介绍的就是机器人不同坐标系之间变换的方法,即旋转矩阵R和变换矩阵T。

Rotation matrix:是在乘以一个向量的时候改变向量的方向但不改变大小的效果并保持了手性的矩阵。其实旋转矩阵可以直接写出来,其值为\{B\}中单位矩阵 I 在\{A\}中的坐标,如式$ ^A_BR = [^AX_B,^AY_B,^AZ_B] $,旋转矩阵的转置就是从相反的方向观察,因此$^A_BR = ^B_AR^T = ^B_AR^{-1}$。对于坐标系原点重合的情况下:设坐标系\{B\}中的点$^BP$,那么它在参考坐标系\{A\}中的点表示为$^AP = ^A_BR^BP $ 。 对于坐标系原点不重合的情况下,例如对于坐标系\{B\}中的向量在参考坐标系\{A\}中的表示为:$^AP_{O_A} =^AP_{O_B} + ^AP_{BORG}$。因此$^AP = ^A_BR^BP+^AP_{BORG0}$,这里涉及到加法等操作对于高纬度空间运用是比较复杂的,但是写成矩阵的形式就是

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值