Introduction to Robotics 总结1~6

机器人学中经典教材 《Introduction to Robotics: Mechanics and Control》,也就是John Craig的中文版《机器人学导论》,刚来实验室的时候,就发现师兄们人手一本了,某些章节自己啃也是有点难度的,之前在 Youtube 上看完了斯坦福 Oussama Khatib 教授的视频Introduction to Robotics,他们上课使用的教材就是这本,一共十六篇lecture,讲解也是很通俗易懂,涵盖了机器人坐标变化、D-H参数建模、动力学、运动学、PD、PID控制、力控制等基本理论。

上交大佬曾今说过:" 如果你把这本书的内容掌握了,就已经超过实验室绝大多数师兄师姐了。然而,真正把教材啃下来的并不多。所以,我在这里要换个说法了,如果你把这本书的内容掌握了,就可以胜任国内绝大多数机器人公司的开发工作了。" https://qiu6401.gitbook.io/how-to-learn-robotics/gettingstarted

这里对十六篇讲座的基本内容做了个简单的概括,可以根据需求快速的找到对应的内容。

The first lecture:

  • [40:50]:So if you have a velocity and omega at the center of mass,and you can write the energy,the kinetic energy,associated with this moving mass and inertia associated with the rigid.And simply by adding the kinetic energy of these different link,you have the total kinetic energy of the system.So the mass matrix will become a very simple form of the Jacobian,so that's why I'm going to insist on your understanding of the Jacobian,once you understand the Jacobian,,you can scale the Jacobian with the masses and the inetials get your dynamics.So going to dynamics is going to be very simple if after you really undertand the Jacobian.
  • [43:54]:Task-Oriented Control: Described as how to move the hand to this location without really focusing on how each of the joint is going to move.And this concept can be captured by simply thinking about total robot as if the robot was attracted to move the goal position.This is similiar to the way a human operate just like you are not thinking about how the joints of the body are moving,you are just moving the hand by applying these forces to move the hand to the goal position.So it's like holding the hand and pulling it down to the goal.第一篇lecture就是对课程的一个总结,其实就是这十六篇的学习重点:一个是雅可比矩阵的理解和计算;另一个就是机器人的控制问题,包括PD control和force control等等话题。出现在视频中的时间为[40:50]和[43:54]。

The second lecture:

通篇介绍的就是机器人不同坐标系之间变换的方法,即旋转矩阵R和变换矩阵T。

Rotation matrix:是在乘以一个向量的时候改变向量的方向但不改变大小的效果并保持了手性的矩阵。其实旋转矩阵可以直接写出来,其值为\{B\}中单位矩阵 I 在\{A\}中的坐标,如式$ ^A_BR = [^AX_B,^AY_B,^AZ_B] $,旋转矩阵的转置就是从相反的方向观察,因此$^A_BR = ^B_AR^T = ^B_AR^{-1}$。对于坐标系原点重合的情况下:设坐标系\{B\}中的点$^BP$,那么它在参考坐标系\{A\}中的点表示为$^AP = ^A_BR^BP $ 。 对于坐标系原点不重合的情况下,例如对于坐标系\{B\}中的向量在参考坐标系\{A\}中的表示为:$^AP_{O_A} =^AP_{O_B} + ^AP_{BORG}$。因此$^AP = ^A_BR^BP+^AP_{BORG0}$,这里涉及到加法等操作对于高纬度空间运用是比较复杂的,但是写成矩阵的形式就是

### 机器人学、力学和控制的入门教程或书籍 对于希望进入机器人学、力学以及控制系统领域的人来说,可以从以下几个方面入手: #### 基础理论 机器人学涉及多个学科的知识融合,包括机械设计、传感器技术、嵌入式系统开发等。Player Project 提供了一系列开源工具用于支持机器人应用中的硬件接口与软件框架构建[^1]。 在电路基础知识方面,掌握基本元件的功能及其相互作用规律是非常重要的前提条件之一,这有助于理解如何搭建实际运行环境下的电子线路板(PCB)[^2]。 关于计算机视觉资源,则可以访问由爱丁堡大学提供的在线图书馆链接地址(http://homepages.inf.ed.ac.uk/rbf/CVonline/books.htm),其中包含了大量经典教材PDF版本下载服务;特别是Andrew Zisserman所著的作品,在模式识别等领域具有深远影响价值[^3]。 以下是几本推荐给初学者阅读的经典著作列表: 1. **Introduction to Robotics: Mechanics and Control** - 这本书全面介绍了机器人的运动学、动力学及控制原理等内容,适合刚接触该领域的读者作为入门指南。 2. **Modern Robotics: Mechanics, Planning, and Control** - 它不仅涵盖了传统意义上的机械臂操作分析方法论,还深入探讨了现代移动平台规划策略等方面的新进展趋势。 3. **Robot Modeling and Control** - 主要聚焦于建模过程中的数学描述方式,并结合具体实例讲解不同类型的控制器设计方案。 4. **Control Systems Engineering** - 针对自动化的反馈机制进行了详尽阐述,能够帮助学生建立起扎实可靠的工程实践能力基础之上进一步探索高级话题。 通过上述资料的学习积累,相信会对整个行业的概貌形成较为清晰的认识并激发更深层次的兴趣追求下去! ```python # 示例代码展示简单的PID控制器实现 class PIDController: def __init__(self, kp=0.0, ki=0.0, kd=0.0): self.kp = kp self.ki = ki self.kd = kd self.previous_error = 0.0 self.integral = 0.0 def update(self, error, dt): proportional_term = self.kp * error integral_term = self.integral += error * dt derivative_term = self.kd * ((error - self.previous_error) / dt) output = proportional_term + integral_term + derivative_term self.previous_error = error return output ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值