【图像分割】Fully Convolutional Networks for Semantic Segmentation

本文详细介绍了如何使用全卷积网络(FCN)解决图像语义分割问题,通过不含全连接层的全卷积结构、反卷积层的升采样以及跳级结构融合不同深度信息,实现了对任意尺寸输入的精确分割。在PASCAL VOC分割任务上取得了62.2%的IU,并提供了基于Caffe的模型和测试代码。训练过程分为四个阶段,逐步提升预测精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks for semantic segmentation.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

这里写图片描述

本文是深度学习应用于图像分割的代表作,作为Oral发表于CVPR 2015,在许多教程中都被推荐(例如Li Feifei在Standford的视觉识别CNN)。第二作者Evan Shelhamer也是Caffe的首席开发者。
本文在图像分割问题中应用了当下CNN的几种最新思潮,在PASCAL VOC分割任务上IU(交比并)达到62.2%,速度达到5fps。提供了基于Caffe的模型和测试python代码

辨:两种分割任务
semantic segmentation - 只标记语义。下图中。
instance segmentation - 标记实例和语义。下图右。
本文研究第一种:语义分割

这里写图片描述

核心思想

本文包含了当下C

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值