Mining Massive Datasets 课程笔记(四)降维

Dimensionality Reduction 降维若原特征空间是D维的,现希望降至d维的。降维的概念相信大家都已经有了解了,就不介绍了,首先从为什么需要降维理解其必要性,然后讲解具体实现。 在这里先简单介绍下矩阵的秩矩阵的秩把矩阵看成线性映射那么秩就是象空间的的维数。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
摘要由CSDN通过智能技术生成

Dimensionality Reduction 降维

若原特征空间是D维的,现希望降至d维的。降维的概念相信大家都已经有了解了,就不介绍了,首先从为什么需要降维理解其必要性,然后讲解具体实现。
Sherryllll
在这里先简单介绍下矩阵的秩

矩阵的秩

把矩阵看成线性映射那么秩就是象空间的的维数。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
Sherryllll
从例子中我们可以看到矩阵A的秩为2,因为第三行向量可以通过第二行和第一行线性表示,因此,我们可以将矩阵A中的维数降到2维就可以表示了。这里可能说的还不够明确,后面的SVD奇异值分解中将能帮助我们深刻理解矩阵的秩的作用。

Singular-Value Decomposition 奇异值分解

这部分我之前转载过一篇文章,写得蛮好,附链接http://blog.csdn.net/sherrylml/article/details/43052325原文链接在文章开头。
Sherryllll
图示如下,可以看到通过存储矩阵U, VT 来表示矩阵A可以大大缩减存储空间
Sherryllll
Sherryllll

CUR Decomposition

前面说到的SVD分解虽然可以提供最小误差的压缩,但是还是存在两个问题。一个是计算比较耗时,另一个是分解后的矩阵密度很高浪费存储空间。而CUR分解则是另外一种降维方法,可以减少SVD的这些缺点。
CUR分解是将矩阵A压缩为C,U,R三个矩阵的乘积,使得 ||ACUR||F 尽可能小。其中 |

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值