论 文 题 目 基于多传感器数据融合的全自动泊车系统研究与应用
论文选题来源 以某公司自动泊车项目为依托
本课题研究的目的、意义
随着工业4.0的到来,通讯技术、计算机技术、人工智能技术已经应用到汽车领域。在智能汽车领域所涉及到的环境感知技术、控制技术等已经得到了快速的发展,传统的汽车逐步实现车与人、车与路、车与车、车与云平台的信息交换共享。国内近期将会实现自动驾驶辅助系统智能化,远期将会实现完全无人驾驶的目标。伴随着社会经济的发展,城市停车空间的日益紧张以及人们对安全、舒适、节能、高效驾驶的追求,自动泊车辅助系统逐渐走进人们的生活,因此,各大院校、研究所、汽车厂商纷纷加大投入进行该领域的研发、试验和实车应用。自动泊车系统通过安装在车体四周的传感器来感知环境进行车位的智能识别,之后建立起空间坐标来规划出相应的轨迹,驱动装置按照预先设定好的数学模型,由算法进行控制,实现自动泊车的过程。自动泊车辅助系统根据预先设计好的策略对路径跟踪,避免车辆与障碍物发生碰撞,减轻驾驶员泊车时的心里负担,帮助驾驶人员安全准确地将车辆停进车位。因此,自动泊车系统对驾驶员辅助泊车具有极其重要的意义。
从关键技术的角度而言,车位检测、路径规划、运动控制成为国内研究的重点。目前车位检测通常有两种实现方式,一种采用超声波传感器或激光雷达测距,另一种采用超声波传感器或激光雷达与图像传感器融合,前者受温度、车速、探测方向、系统电路的影响而增大了测量误差,后者受光强影响会出现检测车位失败。对于路径规划的研究,主要有三种路径规划方式:文献[1-4]采用模糊控制的策略、神经网络,提出了来回多段移动式的泊车路径规划方法;文献[5-7]提出了基于B样条曲线、五次多项式曲线、贝塞尔曲线等曲率连续的泊车路径规划方法;文献[8]提出了由圆弧和直线组成的曲率不连续的泊车路径规划方法。基于模糊控制策略、神经网络路径规划的方法,在泊车过程中不需要停车转动方向盘,但是计算量较大;基于曲率连续的路径规划,对车速的控制要求高,文献[9]中采用B样条曲线对泊车路径曲率进行平滑处理,文献[10]中采用B样条曲线设计泊车路径,虽实现曲率的连续性,但是未考虑方向盘转速对跟踪效果的影响和车速的控制;基于曲率不连续的路径规划,特别是两段式泊车路径规划方法计算量小,但是泊车连贯性低[11]。对
于运动控制,由于泊车的起始位置相对单一,车运动过程中车速的波动,泊车终止位置范围未进行明确定义,目前的控制算法还存在很多不足。文献[12]中以滑动转向的车辆运动学模型为基础,针对不同泊车阶段分别设计出不同的模糊逻辑控制方法。上述的关键技术直接影响车辆能否检测到车位并选择合适的泊车方式,将车辆准确地停放在规划的终点位置。因为在实际泊车时,车位边上的车辆姿态各异,车位地面无辅助线,自动、准确地寻找一个可以停车的车位成为一个难点,之后如何通过车辆尺寸参数与环境参数规划出一条泊车路径,成为研究的关键内容。由此可见,车位智能识别、路径规划成为本课题研究的关键。
车位智能识别主要依靠环境探测传感器,其中常用的有超声波传感器、激光雷达、摄像头,通过单个传感器测距或多个传感器信息融合完成车位的探测。超声波传感器与其他环境探测传感器相比,不受色彩、光照、烟雾、电磁等影响,且结构简单、价格低廉。模糊理论模仿人的思维,较好地应用在车位识别与运动控制中。B样条理论应用在泊车路径设计中,可以得到曲率连续、变化缓慢的泊车路径,满足壁障约束、方向盘转角与转向角速度约束、车辆停放要求,简化了车速控制,降低了泊车难度,提高泊车的成功率。
基于上述背景,本课题针对车位智能识别、轨迹规划两个关键问题,运用超声波传感器、轮速传感器组成的测距系统,结合模糊理论进行车位的智能检测,之后分析泊车过程中的碰撞约束、方向盘转速与转向角速度的关系,基于B样条理论对泊车路径进行规划,通过设计几种泊车工况对路径仿真分析与实车试验,最后实现自动泊车的功能。
本课题国内外研究概况(并在表格最后附上文献综述)
- 自动泊车的发展现状
目前,对于自动泊车的研究很多,大致分为三个方面:一是车位的智能识别,通过环境感知传感器检测到合适的泊车位,根据泊车位的参数决策出其采用垂直泊车、平行泊车、还是斜向泊车的方式;二是路径规划,研究者们根据车位的分布情况,加一些约束条件,规划出一条安全路径;三是运动控制,基于经验算法的研究,研究人员通过遗传算法、神经网络算法、蚁群算法、自适应算法、模糊控制等方法设计出运动控制器,对轨迹进行跟踪控制。对于自动泊车系统的生产企业均为国外零部件企业,国内研发进度缓慢。
(1)国外研究现状
国外对自动泊车的研究比较早,早在1989年斯坦福大学的Derrick Nguyen和Bernard Windrow教授首次发表神经网络的半挂车自动泊车研究成果[13]。1990年,南加州大学的Seong Gon和Bart Kosko发表了《卡车倒车控制系统中模糊控制和神经网络的比较》,该文指出:在解决小车倒车问题时,模糊控制比神经网络更精确,误差更小[