大模型之十九-对话机器人

大语言模型的最早应用是Chatbot,其实我最早接触语义理解在2014年,2014年做智能音箱的时候,那时也是国内第一批做智能音箱的,在现在看起来当时的智能音箱比较傻,很多问题无法回答,长下文效果也不好,多轮对话效果就更差了,那时对话使用的主要技术是基于规则+知识图谱,所以主要还是停留在命令词识别基础上的交互,比如放音乐类、操控智能家电以及问天气等有限的几个范畴,更多的扮演的事assistent角色,开放式聊天做的并不好。
当时是设计阶段就决定了对话的上限,虽然我们当时模仿的Amazon Alexa如今“进化”出了数以万计的技能,但是相对于LLM,这些技能显得有些过时,如何将LLM接入Alex也是亚马逊不得不面临的事。

时至今日大型预训练的语言模型(如GPT、BERT等)使得对话机器人取得了显著的进展。这些模型通过在大规模文本数据上进行预训练,可以生成具有语法正确性、语义连贯性、具有记忆能力多轮对话的文本回复,除了生成自由对话回复的模型,还有一些任务导向的对话系统,如客服机器人、智能助理等。这时在运行时才会决定对话的上限,聊天机器人再次被认为是客户服务、营销和内部运营的潜在游戏规则改变者。

在训练模型的时候,常常提到模型的泛化能力,泛化能力使得模型可以高质量回复训练集中并不存在的内容,即可以将模型的训练过程看成是记忆+学习的过程,记忆是可

### NLP 大型模型聊天机器人实现与实例 #### FastChat 平台概述 为了支持大型语言模型(LLM)聊天机器人的开发和服务,FastChat 提供了一套完整的解决方案。该平台不仅涵盖了训练过程中的各种需求,还提供了便捷的服务接口来部署这些模型,使得开发者可以专注于核心算法的研究和优化[^1]。 #### InstructGPT 的优势分析 相较于其他同类产品如 FLAN 和 T0 模型,在处理 API 用户请求时表现出更高的灵活性。据统计,大约只有 18% 的应用场景涉及到了传统的自然语言处理任务比如分类或问答;相反地,超过一半以上的情况属于较为复杂的开放式生成任务或者是创意性的头脑风暴活动。这表明 InstructGPT 更加贴合实际应用环境下的多样化需求[^2]。 #### 实现方式简介 构建一个高效的 LLM 聊天机器人通常涉及到以下几个关键技术环节: - **数据准备**:收集并整理高质量的对话样本作为训练素材; - **预训练阶段**:利用大规模语料库对基础架构进行初步学习; - **微调调整**:针对特定领域或者功能特性实施精细化定制化训练; - **评估测试**:通过多种评测手段确保最终版本具备良好的交互性能。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "facebook/opt-iml-max-30b" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def generate_response(prompt_text): inputs = tokenizer(prompt_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=50) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response ``` 此代码片段展示了如何加载预先训练好的 OPT-IML-MAX-30B 模型并通过给定提示生成回复的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shichaog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值