Numpy中的数据

本文介绍了Numpy库在Python中的使用,包括导入Numpy、数据类型和形状、标量、向量、矩阵、张量的创建及操作。详细讲述了如何进行元素级运算、矩阵乘法、转置,以及形状的更改。强调了Numpy数组运算的效率和兼容性,并提醒了数组和其转置共享数据的特性。
摘要由CSDN通过智能技术生成

python很方便,但也会很慢。不过它允许你访问执行用C等语言写的代码的库。Numpy就是这样一个库:它为python中的数学运算提供了一个更快速的替代方案,可以与数字组高效搭配使用,如矩阵。Numpy 是一个很大型的库。

1.导入Numpy

import numpy as np

之后就可以给函数和类型名称加上前缀np.来使用该库。

2.数据类型和形状

Numpy中处理数字的常见方式是通过ndarray对象。它们与python列表相似,但是可以有任意数量的维度。而且,ndarray支持快速的数学运算。由于它可以存储任意数量的维度,可以使用narray来表示任意数据类型:标量、向量、矩阵或张量。

3.标量

Numpy中标量比python中标量类型更多。不像python只有基本类型int,float等,Numpy可以让你指定有符号和无符号的类型以及不同的大小。因此,除了python的int,你可以使用uint8,int8,uint16,int16等类型。

这些类型很重要,因为你创建的每一个对象(向量,矩阵,张量)最终都会存储标量。而且,当你创建Numpy数组时,可以指定类型,但是数组中每一项必须具有相同的类型。在这方面,Numpy数组更像是C数组,而非python列表。

如果要创建一个包含标量的Numpy数组,方法是将值传递给Numpy的array函数,如下:

s=np.array(5)

不过仍然可以在ndarray、Numpy标量和普通的python标量之间执行数学运算。

可以通过检查数组的shape属性老查看数组的形状。可以执行代码

s.shape

它会打印出结果,即一对空括号()。这表示它的维度为零。

即使标量位于数组中,你仍然可以像正常的标量一样使用它们,可以键入:

x=s+3

x现在将等于8。如果你检查x的类型,会发现他可能是numpy.int64,因为它在使用Numpy类型,而不是python类型。

顺便说一下,及时标量类型也支持大部分的数组函数。所以可以调用x.shape,它会返回(),因为它的维度为零,即使它不是数组。如果你使用普通的python标量来尝试,就会收到一个错误。

4.向量

要创建一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值