logistic回归

本文介绍了线性回归的概念,包括最小二乘法和最大似然估计,并展示了线性回归的代码实现。接着,讨论了逻辑斯蒂回归,解释了sigmoid函数的作用以及如何用梯度上升法进行训练。最后,通过sklearn库实现了逻辑回归模型,并在鸢尾花数据集上展示了分类效果。
摘要由CSDN通过智能技术生成

一、线性回归

 

1、线性回归的概念

  如果特征值之间存在线性关系就可以使用线性回归建模对其预测结果。

(1)函数模型

 

 1.2最小二乘法求解
  何为最小二乘法,我们有很多的给定点,这时候我们需要找出一条线去拟合它,那么我先假设这个线的方程,然后把数据点代入假设的方程得到观测值,求使得实际值与观测值相减的平方和最小的参数。对变量求偏导联立便可求。

 1.3 最大似然估计概念
        举个例子,在有一组样本X1,X2,X3,…,Xn;取值x1,x2,…,xn。我们不知道这些样本所属总体服从的具体分布,但是我们知道他们和未知参数结合的形式——比如上述样本的概率分别为p(x1,θ1,θ2,…,θn),p(x2,θ1,θ2,…,θn),…,p(xn,θ1,θ2,…,θn).      那么现在如何对未知的参数θ1,θ2,…,θn进行估计以确定样本的函数?

        那就是将这些样本对应的分布乘起来构建似然函数,再通过对似然函数求极大值,获得各个参数的取值。

2.逻辑斯蒂回归
  逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的。

2.1sigmoid函数概念
逻辑斯蒂回归是一个经典的二分类模型,它的精髓在于用线性回归做二分类(或多分类,本文以二分类为主)。线性回归的输出为没有约束的连续值,而分类在于0和1两个值,如何从回归值到分类值就需要一个映射,于是引入了sigmoid函数:

这里写图片描述

  此时我们将线性模型产生的预测值带入sigmoid函数,函数会输出相对应的二分类的概率,具体的训练方法和上面的线性回归是一样的,不同的是误差函数的求导

3.代码实现

梯度上升


def loadDataSet():
    dataMat = []; labelMat = []
    fr = open('dataset5.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat
def sigmoid(inX):
    return 1.0/(1+exp(-inX))
 
def gradAscent(dataMatIn, classLabels):
    #转换为numpy矩阵类型,便于优化和并行计算
    dataMatrix = mat(dataMatIn)             #convert to NumPy matrix
    labelMat = mat(classLabels).transpose() #convert to NumPy matrix
    #将Label转置为列向量
    m,n = shape(dataMatrix)#m行n列
    alpha = 0.001#学习速度
    maxCycles = 500#最大学习步数
    weights = ones((n,1))#将来的输出
    for k in range(maxCycles):              #heavy on matrix operations
        h = sigmoid(dataMatrix*weights)     #matrix mult
        error = (labelMat - h)              #vector subtraction
        weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
    return weights

决策边界

def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()#加载源数据,用于画图
    dataArr = array(dataMat)#将data向量化
    n = shape(dataArr)[0] #n为data的个数
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    #给data分类
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    #用不同的颜色画出来
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    #arange([start,] stop[, step,], dtype=None)
    #根据start与stop指定的范围以及step设定的步长,生成一个 ndarray。
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()

 随机梯度下降


def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)
    weights = ones(n)   #initialize to all ones
    for j in range(numIter):#对样本迭代150次
        dataIndex = list(range(m))#dataIndex保存了所有在本次迭代中还没有使用过的data
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.0001    #apha decreases with iteration, does not
            print(alpha)
            randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            del(dataIndex[randIndex])
    return weights

 4.


from sklearn.linear_model import LogisticRegression
import numpy as np
from sklearn import model_selection
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
 
# 定义一个函数,将不同类别标签与数字相对应
def iris_type(s):
    class_label={b'Iris-setosa':0,b'Iris-versicolor':1,b'Iris-virginica':2}
    return class_label[s]
 
#使用numpy中的loadtxt读入数据文件
filepath='iris/iris1.txt'  # 数据文件路径
data=np.loadtxt(filepath,dtype=float,delimiter='\t',converters={4:iris_type})

 
#将原始数据集划分成训练集和测试集
X ,y=np.split(data,(4,),axis=1) #np.split 按照列(axis=1)进行分割,从第四列开始往后的作为y 数据,之前的作为X 数据。函数 split(数据,分割位置,轴=1(水平分割) or 0(垂直分割))。
x=X[:,0:2] #在 X中取前两列作为特征(为了后期的可视化画图更加直观,故只取前两列特征值向量进行训练)
x_train,x_test,y_train,y_test=model_selection.train_test_split(x,y,random_state=1,test_size=0.3)

 
#搭建模型,训练LogisticRegression分类器
classifier=Pipeline([('sc',StandardScaler()),('clf',LogisticRegression())])
#开始训练
classifier.fit(x_train,y_train.ravel())
 
 
def show_accuracy(y_hat,y_test,parameter):
    pass
 
#计算LogisticRegression分类器的准确率
print("LogisticRegression-输出训练集的准确率为:",classifier.score(x_train,y_train))
y_hat=classifier.predict(x_train)
show_accuracy(y_hat,y_train,'训练集')
print("LogisticRegression-输出测试集的准确率为:",classifier.score(x_test,y_test))
y_hat=classifier.predict(x_test)
show_accuracy(y_hat,y_test,'测试集')
 
# 绘制图像
# 1.确定坐标轴范围,x,y轴分别表示两个特征
x1_min, x1_max = x[:, 0].min(), x[:, 0].max()  # 第0列的范围
x2_min, x2_max = x[:, 1].min(), x[:, 1].max()  # 第1列的范围
x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]  # 生成网格采样点
grid_test = np.stack((x1.flat, x2.flat), axis=1)  # 测试点
# print 'grid_test = \n', grid_test
grid_hat = classifier.predict(grid_test)       # 预测分类值
grid_hat = grid_hat.reshape(x1.shape)  # 使之与输入的形状相同
# 2.指定默认字体
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
# 3.绘制
cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
alpha=0.5
plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light) # 预测值grid_hat的显示 显示分类区域
plt.scatter(x[:, 0], x[:, 1], c=y.ravel(),s=50, cmap=cm_dark)  # 样本
plt.scatter(x_test[:, 0], x_test[:, 1], s=10, facecolors='yellow', zorder=3)  # 圈中测试集样本
plt.xlabel(u'花萼长度', fontsize=13)
plt.ylabel(u'花萼宽度', fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'鸢尾花LogisticRegression分类结果', fontsize=15)
plt.grid() #显示网格
plt.show()

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值