一、写在前面
Agent,中文译为“代理”或“智能体”,是一种能够在特定环境中自主行动、感知环境、做出决策并与其他Agent或人类进行交互的计算机程序或实体。它们具备自主性、反应性、社交性和适应性等特点,能够根据环境的变化调整自己的行为,以达到预设的目标。
本文通过详细拆解Agent从提示词接收、LLM大模型理解识别、知识库匹配、任务规划到行动执行等五个关键步骤,从而深入剖析Agent的工作原理,另外也将目前市面上Agent产品的能力项汇总,希望给大家带来一些启示。
二、典型Agent智能体的工作过程
典型Agent智能体的工作过程示例
(一)关键步骤一:
Prompt提示词【圈定角色范围、阐述任务背景、习惯特色】
提示词是Agent接收到的初始输入,它描述了Agent需要完成的任务或解决的问题。提示词可以是文本、图像、语音等多种形式。Agent需要对提示词进行解析和理解,以便为后续的任务规划和行动执行提供指导。
智能体的提示词要统一:对话涉及到发展平台的生态供应方,包括行业规范、背景知识和智能体的提示词。提示词包括上下文和指令,需要注意清晰表达需求、统一称谓代词和避免行业黑话。
(1) 通用指令构成
① Context 上下文:说明想让大模型执行任务的背景
② Instruction