一文详细拆解Agent工作原理|实在Agent研究

本文详细探讨了Agent智能体从接收到提示词、理解、知识库匹配到任务规划和执行的全过程,介绍了LLM大模型的作用以及关键步骤中的技术细节。同时概述了当前市场上的Agent形态和未来发展趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、写在前面

Agent,中文译为“代理”或“智能体”,是一种能够在特定环境中自主行动、感知环境、做出决策并与其他Agent或人类进行交互的计算机程序或实体。它们具备自主性、反应性、社交性和适应性等特点,能够根据环境的变化调整自己的行为,以达到预设的目标。

本文通过详细拆解Agent从提示词接收、LLM大模型理解识别、知识库匹配、任务规划到行动执行等五个关键步骤,从而深入剖析Agent的工作原理,另外也将目前市面上Agent产品的能力项汇总,希望给大家带来一些启示。

二、典型Agent智能体的工作过程

典型Agent智能体的工作过程示例

(一)关键步骤一:

Prompt提示词【圈定角色范围、阐述任务背景、习惯特色】

提示词是Agent接收到的初始输入,它描述了Agent需要完成的任务或解决的问题。提示词可以是文本、图像、语音等多种形式。Agent需要对提示词进行解析和理解,以便为后续的任务规划和行动执行提供指导。

智能体的提示词要统一:对话涉及到发展平台的生态供应方,包括行业规范、背景知识和智能体的提示词。提示词包括上下文和指令,需要注意清晰表达需求、统一称谓代词和避免行业黑话。

(1) 通用指令构成

① Context 上下文:说明想让大模型执行任务的背景

② Instruction

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

实在智能RPA

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值