从2022年尾大模型横空出世后,各种各样的名词变得耳熟能详,而有一个词AI Agent,似乎总有人不理解它和普通的大模型有什么关系,今天这篇文章就来带你理清楚AI Agent究竟是什么。
Agent的中文翻译为“代理”,AI Agent的在大模型时代由OpenAI团队重新定义。
OpenAI认为,AI Agent就是由大模型驱动,由规划能力组件(Planning)、记忆组件(Memory)、工具组件(Tools)、行为组件(Action)等组件所组成的“智能助手”。
你也可以把AI Agent理解为我们的智能助手,与传统智能助手不一样的是,AI Agent有着更加强大的能力。
OpenAI的Agent定义
现在广义上的Agent则是把整个概念给更加泛化,它拥有更多技能,例如角色管理、思维树等,在原本的定义上能够增加很多能力,这是现在广义的Agent概念。
那么首先先了解一下LLM为什么能作为AI智能体的核心驱动。
大模型拥有一定的自主性和主动性,在用户输入时能够根据用户的输入来选择是要调用工具搜索、还是计算、还是直接回答等等,能自己动脑筋分析问题、规划步骤,还能主动出击,既能搞定具体任务,又能灵活应对各种变化。
由llm驱动的Agent不仅可以高效执行人类明确指令,也具备自主发起任务、探索下一步并且动态决策的能力,拥有一定的反应能力,能在每一次的任务不同、环境不同的情况下做出正确的决定,在目标驱动下实现从被动响应到主动行为的跨越。
记忆模块则分为短期记忆和长期记忆两种类型。
短期记忆指的是和智能体交流时、写入到提示词中的那些临时的、没有存储的有限的上下文的信息,Agent可以根据这些信息和我们进行多轮对话、智能回答等操作。
长期记忆指的是在Agent在进行回忆时,调用工具查询数据库提供的信息,就是由外部存储提供的信息,可以是向量数据库存储,也可以是关系型数据库或非关系型数据库持久化的存储。
记忆能力可以在Agent有需要的时候检索查阅,就像你开卷考试一样,书本就是你的数据库,书里的东西就是你的信息,试卷问题就是用户输入,你这个智能的大脑能从书里面找到问题相关的上下文,然后总结提炼出答案。
工具模块则是调用各种API,包括代码解释器、计算器、浏览器的搜索API等等这些。
以谷歌的API搜索为例,Agent能将用户的输入、搜索地址、语言等信息输入API进行搜索,再智能一点的Agent,会将用户的输入进行改写或者分成小任务之后再放进去搜索,然后返回 JSON 数据格式的结果。
Planning计划组件,其实更多地依赖于llm自身的能力和提示词的指引,CoT是非常经典的提示词技术,让模型一步一步思考,把任务分解成小任务或多个步骤,然后逐个完成。
另一个技术则是借助外部的Planner来帮助实现任务规划,这个Planner呢则是可以根据现有的这个领域来做具体的规划。这种方法的好处是更加智能和高效,能根据不同的领域做出不同的规划。
模型的反思和自我批评:Agent就像个会"吃一堑长一智"的学徒,每次行动后都会根据用户的下一次输入来复盘或者在推理过程中突然意识到——哪些方法有效就保留,哪里出岔子就调整。毕竟现实任务就像玩游戏闯关,总得先踩几个坑才能找到诀窍,这时候反思总结就是它升级打怪的秘籍。
Action行动模块,说白了就是它动手干活儿的部分。就像咱们工具箱里的十八般武艺,它能根据任务选不同招数——要查资料就翻记忆库,得分析问题就分布推理,甚至还能自己写代码(比如让它做个网页,它就得掏出编程本事来)。
上面我们讲的都是单代理系统(Single-Agent System),下面我们来看看多代理系统。
多代理系统是由多个独立智能体(Agent)组成的分布式协作网络。每个代理具备自主决策能力、局部知识或专长工具,通过通信、协商与合作共同完成复杂任务。其核心理念是“分工协作”,模拟现实世界中团队协作的高效模式。
多个Agent互相合作比单个Agent要高效稳定得多,我们看下面的对比图就知道:
至于如何使用Agent这里先不展开。现实落地的应用好多都是用的workflow来做伪Agent,因为实际上的大模型并不是很稳定,我们都知道大模型有幻觉,那由大模型驱动的Agent也会出现幻觉现象。
所以大多数时候我们会用工作流来做“智能体”,若大家想体验Agent,可以去看看Qwen开源的Agent框架,也可以去看看coze扣子社区,扣子社区对非IT领域的人员来说比较友好,或者也可以看看langchain的智能体。后面我再出一个使用智能体的介绍文章,感兴趣的话可以多多留意。
既然看到这啦,不妨点个赞点个在看啦~谢谢各位看官老爷。
那么,如何系统的去学习大模型LLM?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《AI大模型入门+进阶学习资源包**》,扫码获取~
篇幅有限,部分资料如下:
👉LLM大模型学习指南+路线汇总👈
💥大模型入门要点,扫盲必看!
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
路线图很大就不一一展示了 (文末领取)
👉大模型入门实战训练👈
💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉国内企业大模型落地应用案例👈
💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
👉GitHub海量高星开源项目👈
💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
👉LLM大模型学习视频👈
💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
👉640份大模型行业报告(持续更新)👈
💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉获取方式:
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓