导数公式整理(更新中)

求导基本公式

导数基本公式微分基本公式
C ′ = 0 C'=0 C=0 d ( C ) = 0 d(C)=0 d(C)=0
( x a ) ′ = a x n − 1 (x^a)'=ax^{n-1} (xa)=axn1

特别地, ( x ) ′ = 1 2 x (\sqrt{x})'=\frac{1}{2\sqrt{x}} (x )=2x 1

( 1 x ) ′ = − 1 x 2 (\frac{1}{x})'=-\frac{1}{x^2} (x1)=x21
d ( x a ) = a x a − 1 d x d(x^a)=ax^{a-1}dx d(xa)=axa1dx

特别地, d ( x ) = 1 2 x d x d(\sqrt{x})=\frac{1}{2\sqrt{x}}dx d(x )=2x 1dx

d ( 1 x ) = − 1 x 2 d x d(\frac{1}{x})=-\frac{1}{x^2}dx d(x1)=x21dx
( a x ) ′ = a x l n a , ( a > 0 , a ≠ 1 ) (a^x)'=a^xlna,(a>0,a≠1) (ax)=axlna,(a>0,a=1)

特别地, ( e x ) ′ = e x (e^x)'=e^x (ex)=ex
d ( a x ) = a x l n a   d x , ( a > 0 , a ≠ 1 ) d(a^x)=a^xlna\,dx,(a>0,a≠1) d(ax)=axlnadx,(a>0,a=1)

特别地, d ( e x ) = e x   d x d(e^x)=e^x\,dx d(ex)=exdx
( l o g a x ) ′ = 1 x l n a , ( a > 0 , a ≠ 1 ) (log_ax)'=\frac{1}{xlna},(a>0,a≠1) (logax)=xlna1,(a>0,a=1)

特别地, ( l n x ) ′ = 1 x (lnx)'=\frac{1}{x} (lnx)=x1
d ( l o g a x ) = 1 x l n a   d x , ( a > 0 , a ≠ 1 ) d(log_ax)=\frac{1}{xlna}\,dx,(a>0,a≠1) d(logax)=xlna1dx,(a>0,a=1)

特别地, d ( l n x ) = 1 x   d x d(lnx)=\frac{1}{x}\,dx d(lnx)=x1dx

三角函数

导数基本公式微分基本公式
( s i n x ) ′ = c o s x (sinx)'=cosx (sinx)=cosx d ( s i n x ) = c o s x   d x d(sinx)=cosx\,dx d(sinx)=cosxdx
( c o s x ) ′ = − s i n x (cosx)'=-sinx (cosx)=sinx d ( c o s x ) = − s i n x   d x d(cosx)=-sinx\,dx d(cosx)=sinxdx
( t a n x ) ′ = s e c 2 x (tanx)'=sec^2x (tanx)=sec2x d ( t a n x ) = s e c 2 x   d x d(tanx)=sec^2x\,dx d(tanx)=sec2xdx
( c o t   x ) ′ = − c s c 2   x (cot\,x)'=-csc^2\,x (cotx)=csc2x d ( c o t   x ) = − c s c 2   x   d x d(cot\,x)=-csc^2\,x\,dx d(cotx)=csc2xdx
( s e c   x ) ′ = s e c x   t a n x (sec \,x)'=secx\,tanx (secx)=secxtanx d ( s e c   x ) = s e c x   t a n x   d x d(sec \,x)=secx\,tanx\,dx d(secx)=secxtanxdx
( c s c   x ) ′ = − c s c   x c o t   x (csc \,x)'=-csc\,x cot\,x (cscx)=cscxcotx d ( c s c   x ) = − c s c   x c o t   x   d x d(csc \,x)=-csc\,x cot\,x\,dx d(cscx)=cscxcotxdx

反三角函数

导数基本公式微分基本公式
( a r c s i n   x ) ′ = 1 1 − x 2 (arcsin\,x)'=\frac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1 d ( a r c s i n   x ) = 1 1 − x 2 d x d(arcsin\,x)=\frac{1}{\sqrt{1-x^2}}dx d(arcsinx)=1x2 1dx
( a r c c o s   x ) ′ = − 1 1 − x 2 (arccos\,x)'=-\frac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1 d ( a r c c o s   x ) = − 1 1 − x 2 d x d(arccos\,x)=-\frac{1}{\sqrt{1-x^2}}dx d(arccosx)=1x2 1dx
( a r c t a n   x ) ′ = 1 1 + x 2 (arctan\,x)'=\frac{1}{1+x^2} (arctanx)=1+x21 d ( a r c t a n   x ) = 1 1 + x 2   d x d(arctan\,x)=\frac{1}{1+x^2}\,dx d(arctanx)=1+x21dx
( a r c c o t   x ) ′ = − 1 1 + x 2 (arccot\,x)'=-\frac{1}{1+x^2} (arccotx)=1+x21 d ( a r c c o t   x ) = − 1 1 + x 2   d x d(arccot\,x)=-\frac{1}{1+x^2}\,dx d(arccotx)=1+x21dx
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值