通信原理最佳接收-最佳接收准则

本文探讨了在噪声背景下信号接收的统计判决过程,重点分析了高斯白噪声环境下信号接收的统计特性。介绍了接收信号的似然函数及其在二进制信号中的应用,阐述了似然准则作为使差错概率最小的最佳接收准则的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面:本文截屏自西安电子科技大学曹丽娜
视频学习地址:https://www.bilibili.com/video/BV1B7411o7Jo?p=34
仅供个人学习和构建知识体系所用。

信号接收:噪声背景下的信号接收是一个统计判决的过程
在这里插入图片描述
噪声n(t)是均值为0的高斯白噪声。
下面是n(t)的k维概率密度函数,在统计独立的条件下,k维概率密度函数等于噪声各抽样值的一维概率密度函数的乘积。
由一维概率密度函数可得k维概率密度函数
在这里插入图片描述

利用噪声抽样值的均方值=噪声在一个TB内的平均功率,可得下式:

在这里插入图片描述
方差等于下式:
在这里插入图片描述

下面分析接收电压r(t)的统计特性
当发送码元 s i ( t ) s_i(t) si(t)的统计特性已知时,r(t)的统计特性完全由噪声n(t)决定,所以输出电压r(t)也是高斯分布
在这里插入图片描述

输出信号的方差仍然是 σ n 2 \sigma_n^2 σn2,均值变成 s i ( t ) s_i(t) si(t)
r(t)的k维联合概率密度函数也称似然函数,表示 接收信号r(t)与发送信号码元 s i ( t ) s_i(t) si(t)相似程度
在这里插入图片描述
对于二进制信号,i取0和1, f 0 ( r ) 是 s 0 ( t ) 的 似 然 函 数 , f 1 ( r ) 是 s 1 ( t ) 的 似 然 函 数 。 f_0(r)是s_0(t)的似然函数,f_1(r)是s_1(t)的似然函数。 f0(r)s0(t)f1(r)s1(t)

似然准则

似然准则是使差错概率最小的最佳接收准则。

求总误码率 P e P_e Pe

判决分界线
在这里插入图片描述
在这里插入图片描述

使误码率最小的判决规则
在这里插入图片描述

在这里插入图片描述
写成交叉相乘的形式
在这里插入图片描述
当发送1的概率和发送0的概率相等时
谁的似然函数大,就意味着接收信号是谁的可能性大。
在这里插入图片描述

推广到多进制
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值