写在前面:本文截屏自西安电子科技大学曹丽娜
视频学习地址:https://www.bilibili.com/video/BV1B7411o7Jo?p=34
仅供个人学习和构建知识体系所用。
确知信号:一旦某个码元波形出现时,它的所有参数都是确知的。比如:通过衡参信道到达接收机输入端的数字信号。
注意:接收机预先并不知道在每个码元时间内出现的是哪个波形。
主要内容 |
---|
最佳接收机结构 |
误码性能和信号设计 |
最佳接收机结构
二进制发送码元和噪声信号的信息
接收信号为
我们的任务是:按照似然准则构造最佳接收机结构,使得误码率最小
根据似然准则
并且把似然函数代入
并且利用E0=E1
这里的W0和W1分别与发送概率P(0)和P(1)有关
构造出最佳接收机的结构
在等概率时,W0和W1相等,可以消掉,最佳接收机结构可以简化为
这里的相乘积分运算也称为相关运算,器件叫做相关器。
原理:将接收信号r(t)与可能发送的两个样本信号进行相关性比较。
注意:相关接收要求接收端提供与发送信号完全相同的信号,和相关解调需要提供本地载波一样。
能否用匹配滤波器等效相关器?
答案是对啊
在抽样时刻TB,相关器的输出:
y
(
T
B
)
=
∫
0
T
B
r
(
u
)
s
i
(
u
)
d
u
y(T_B)=\int_0^{T_B}r(u)s_i(u)du
y(TB)=∫0TBr(u)si(u)du
i=0是上支路,i=1是下支路
匹配滤波器的输出
y
(
t
)
=
r
(
t
)
∗
h
i
(
t
)
y(t)=r(t)*h_i(t)
y(t)=r(t)∗hi(t)
而
h
i
(
t
)
=
s
i
(
T
B
−
t
)
h_i(t)=s_i(T_B-t)
hi(t)=si(TB−t)
所以,此处进行了变量代换
y
(
t
)
=
∫
t
−
T
B
t
r
(
u
)
s
i
(
T
B
−
t
+
u
)
d
u
y(t)=\int_{t-T_B}^{t}r(u)s_i(T_B-t+u)du
y(t)=∫t−TBtr(u)si(TB−t+u)du
当t=TB时,
y
(
T
B
)
=
∫
0
T
B
r
(
u
)
s
i
(
u
)
d
u
y(T_B)=\int_0^{T_B}r(u)s_i(u)du
y(TB)=∫0TBr(u)si(u)dui=0是上支路,i=1是下支路
可以发现相关器和匹配滤波器是等效的。等效的条件是:两者的输出在抽样时刻(t=TB)相等
误码性能和信号设计
二进制通信系统的误码率
在二进制最佳接收机的判决如下图
则错误转移概率
下面看发送码元1使,错判为0的转移概率
简写为
同理,发送码元为0,错判为1的转移概率
我们求出了误码率为
其中,积分上限分别为a和b,
当先验概率P(0)=P(1)时,误码率可以简写
可见,当P(0)=P(1),并给定噪声功率谱密度n0时,误码率Pe仅与两种码元波形之差的能量有关,而与波形本身无关。差别越大,c值越小,误码率越小。
下面:如何设计
s
0
(
t
)
和
s
1
(
t
)
s_0(t)和s_1(t)
s0(t)和s1(t)使得误码率Pe最小?
两个码元的差异性可定量用互相关程度ρ描述
当E0=E1时,记为E0=E1=Eb,表示
s
0
(
t
)
和
s
1
(
t
)
s_0(t)和s_1(t)
s0(t)和s1(t)的平均能量,此时互相关系数可以表示为
s
0
(
t
)
和
s
1
(
t
)
s_0(t)和s_1(t)
s0(t)和s1(t)的不同关系
下面建立误码率Pe和互相关系数ρ的关系
最终关系为:互补误差形式
当Eb/n0一定时,Pe时相关系数ρ的函数
由于互补误差函数是自变量的单调递减函数,所以ρ越小,自变量越大,误码率越小。所以当ρ=-1时,误码率最小。
误码率Pe通过互相关系数ρ与信号码元
s
0
(
t
)
和
s
1
(
t
)
s_0(t)和s_1(t)
s0(t)和s1(t)建立关系
总结如下图
归纳
结论 |
---|
E b n 0 \frac{E_b}{n_0} n0Eb一定时,误码率取决于ρ(码元差异性) |
ρ=-1的信号时最佳信号形式 |
2PSK的信号性能最佳,2FSK次之,2ASK最差 |