阅读翻译Mathematics for Machine Learning之2.5 Linear Independence

阅读翻译Mathematics for Machine Learning之2.5 Linear Independence

关于:

  • 首次发表日期:2024-07-18
  • Mathematics for Machine Learning官方链接: https://mml-book.com
  • ChatGPT和KIMI机翻,人工润色
  • 非数学专业,如有错误,请不吝指出

2.5 线性无关( Linear Independence)

接下来,我们将仔细看看如何操作向量(向量空间的元素)。特别是,我们可以将向量相加并用标量相乘。闭合性(closure property)保证了我们最终得到的还是同一向量空间中的另一个向量。我们可以找到一组(set)向量,通过相加和缩放这些向量,我们可以表示向量空间中的每一个向量。这组向量称为基(base),我们将在第2.6.1节讨论它们。在此之前,我们需要介绍线性组合和线性无关的概念。

定义 2.11(线性组合)。考虑一个向量空间 V V V 和有限数量的向量 x 1 , … , x k ∈ V \boldsymbol{x}_1, \ldots, \boldsymbol{x}_k \in V x1,,xkV。那么,每一个 v ∈ V \boldsymbol{v} \in V vV 形式如下的向量

v = λ 1 x 1 + ⋯ + λ k x k = ∑ i = 1 k λ i x i ∈ V (2.65) \boldsymbol{v}=\lambda_1 \boldsymbol{x}_1+\cdots+\lambda_k \boldsymbol{x}_k=\sum_{i=1}^k \lambda_i \boldsymbol{x}_i \in V \tag{2.65} v=λ1x1++λkxk=i=1kλixiV(2.65)

其中 λ 1 , … , λ k ∈ R \lambda_1, \ldots, \lambda_k \in \mathbb{R} λ1,,λkR 是向量 x 1 , … , x k \boldsymbol{x}_1, \ldots, \boldsymbol{x}_k x1,,xk 的线性组合。

零向量 0 \mathbf{0} 0 总是可以写成 k k k 个向量 x 1 , … , x k \boldsymbol{x}_1, \ldots, \boldsymbol{x}_k x1,,xk 的线性组合,因为 0 = ∑ i = 1 k 0 x i \mathbf{0}=\sum_{i=1}^k 0 \boldsymbol{x}_i 0=i=1k0xi 总是成立的。接下来,我们对一组向量的非平凡(non-trivial)线性组合表示 0 \mathbf{0} 0 感兴趣,即向量 x 1 , … , x k \boldsymbol{x}_1, \ldots, \boldsymbol{x}_k x1,,xk 的线性组合,其中不是所有系数 λ i \lambda_i λi 在 (2.65) 中都为 0。

定义 2.12(线性(不)相关性)。让我们考虑一个向量空间 V V V 以及 k ∈ N k \in \mathbb{N} kN x 1 , … , x k ∈ V \boldsymbol{x}_1, \ldots, \boldsymbol{x}_k \in V x1,,xkV。如果存在一个非平凡的线性组合,使得 0 = ∑ i = 1 k λ i x i \mathbf{0}=\sum_{i=1}^k \lambda_i \boldsymbol{x}_i 0=i=1kλixi 且至少有一个 λ i ≠ 0 \lambda_i \neq 0 λi=0,则向量 x 1 , … , x k \boldsymbol{x}_1, \ldots, \boldsymbol{x}_k x1,,xk 是线性相关的。如果只存在零解,即 λ 1 = … = λ k = 0 \lambda_1=\ldots=\lambda_k=0 λ1==λk=0,则向量 x 1 , … , x k \boldsymbol{x}_1, \ldots, \boldsymbol{x}_k x1,,xk 是线性无关的。

线性无关是线性代数中最重要的概念之一。直观上,一组线性无关的向量由没有冗余的向量组成,即,如果我们从集合中移除任何一个向量,我们将失去一些东西。在接下来的章节中,我们将更正式地讨论这一直觉。

注释 以下性质对于判断向量是否线性无关是有用的:

  • k k k 个向量要么线性相关,要么线性无关,没有第三种可能。

  • 如果向量 x 1 , … , x k \boldsymbol{x}_1, \ldots, \boldsymbol{x}_k x1,,xk 中至少有一个是零向量 0 \mathbf{0} 0,那么它们是线性相关的。如果有两个向量相同,也成立。

  • 向量 { x 1 , … , x k : x i ≠ 0 , i = 1 , … , k } , k ⩾ 2 \left\{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k : \boldsymbol{x}_i \neq \mathbf{0}, i=1, \ldots, k\right\}, k \geqslant 2 {x1,,xk:xi=0,i=1,,k},k2 是线性相关的,当且仅当(至少)其中一个是其他向量的线性组合。特别地,如果一个向量是另一个向量的倍数,即 x i = λ x j , λ ∈ R \boldsymbol{x}_i=\lambda \boldsymbol{x}_j, \lambda \in \mathbb{R} xi=λxj,λR,那么集合 { x 1 , … , x k : x i ≠ 0 , i = 1 , … , k } \left\{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k : \boldsymbol{x}_i \neq \mathbf{0}, i=1, \ldots, k\right\} {x1,,xk:xi=0,i=1,,k} 是线性相关的。

  • 检查向量 x 1 , … , x k ∈ V \boldsymbol{x}_1, \ldots, \boldsymbol{x}_k \in V x1,,xkV 是否线性无关的一种实用方法是使用高斯消元法:将所有向量作为矩阵 A \boldsymbol{A} A 的列,并进行高斯消元,直到矩阵处于行阶梯形态(这里不需要行简化阶梯形态(reduced row-echelon form)):

    • 枢轴列(pivot columns)表示与其左边的向量线性无关的向量。注意,在构建矩阵时向量是有顺序的。
    • 非枢轴列可以表示为左边枢轴列的线性组合。例如,行阶梯形态
      [ 1 3 0 0 0 2 ] \left[\begin{array}{lll} 1 & 3 & 0 \\ 0 & 0 & 2 \end{array}\right] [103002]

    告诉我们第一列和第三列是枢轴列。第二列是非枢轴列,因为它是第一列的三倍。

所有列向量是线性无关的当且仅当所有列都是枢轴列。如果至少有一个非枢轴列,则这些列(因此,相应的向量)是线性相关的。

注释 考虑一个向量空间 V V V,其中有 k k k 个线性无关的向量 b 1 , … , b k \boldsymbol{b}_1, \ldots, \boldsymbol{b}_k b1,,bk m m m 个线性组合

x 1 = ∑ i = 1 k λ i 1 b i , ⋮ x m = ∑ i = 1 k λ i m b i . (2.7.0) \begin{gathered} \boldsymbol{x}_1=\sum_{i=1}^k \lambda_{i1} \boldsymbol{b}_i, \\ \vdots \\ \boldsymbol{x}_m=\sum_{i=1}^k \lambda_{im} \boldsymbol{b}_i . \end{gathered} \tag{2.7.0} x1=i=1kλi1bi,xm=i=1kλimbi.(2.7.0)

定义 B = [ b 1 , … , b k ] \boldsymbol{B}=\left[\boldsymbol{b}_1, \ldots, \boldsymbol{b}_k\right] B=[b1,,bk] 为一个矩阵,其列是线性无关的向量 b 1 , … , b k \boldsymbol{b}_1, \ldots, \boldsymbol{b}_k b1,,bk,我们可以更紧凑地写成

x j = B λ j , λ j = [ λ 1 j ⋮ λ k j ] , j = 1 , … , m , (2.7.1) \begin{gathered} \boldsymbol{x}_j=\boldsymbol{B} \boldsymbol{\lambda}_j, \quad \boldsymbol{\lambda}_j=\left[\begin{array}{c} \lambda_{1j} \\ \vdots \\ \lambda_{kj} \end{array}\right], \quad j=1, \ldots, m,\\ \end{gathered} \tag{2.7.1} xj=Bλj,λj= λ1jλkj ,j=1,,m,(2.7.1)

我们想要检验 x 1 , … , x m \boldsymbol{x}_1, \ldots, \boldsymbol{x}_m x1,,xm 是否线性无关。为此,我们遵循检验 ∑ j = 1 m ψ j x j = 0 \sum_{j=1}^m \psi_j \boldsymbol{x}_j=\mathbf{0} j=1mψjxj=0 的一般方法。通过 (2.71),我们得到

∑ j = 1 m ψ j x j = ∑ j = 1 m ψ j B λ j = B ∑ j = 1 m ψ j λ j . (2.7.2) \sum_{j=1}^m \psi_j \boldsymbol{x}_j=\sum_{j=1}^m \psi_j \boldsymbol{B} \boldsymbol{\lambda}_j=\boldsymbol{B} \sum_{j=1}^m \psi_j \boldsymbol{\lambda}_j . \tag{2.7.2} j=1mψjxj=j=1mψjBλj=Bj=1mψjλj.(2.7.2)

这意味着当且仅当列向量 { λ 1 , … , λ m } \left\{\boldsymbol{\lambda}_1, \ldots, \boldsymbol{\lambda}_m\right\} {λ1,,λm} 是线性无关的, { x 1 , … , x m } \left\{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m\right\} {x1,,xm} 是线性无关的。

注释:在一个向量空间 V V V 中, m m m 个由 k k k 个向量 x 1 , … , x k \boldsymbol{x}_1, \ldots, \boldsymbol{x}_k x1,,xk 线性组合而成的向量是线性相关的,如果 m > k m>k m>k

  • 20
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 数学对机器学习具有重要的指导作用。机器学习是一种利用计算机算法来解决问题并自动改进的方法。数学作为机器学习的基础,为我们提供了理论和工具,帮助我们理解和解决许多机器学习问题。 首先,线性代数在机器学习中起着关键作用。线性代数涉及矩阵和向量的运算,而这些在机器学习中经常被用来表示数据和模型。通过线性代数,我们可以理解和操作数据集,推导和求解机器学习模型。 其次,微积分在机器学习中也非常重要。微积分涉及函数的导数和积分,而这些在优化和概率模型中扮演着重要角色。通过微积分,我们可以优化模型的参数,通过梯度下降算法来最小化损失函数,并进行机器学习模型的训练。 另外,概率论和统计学在机器学习中也扮演着重要角色。概率论帮助我们建立模型,量化不确定性,推断未知的数据。统计学则提供了评估模型性能和参数估计的方法。通过概率论和统计学,我们可以进行模型选择,避免过拟合或欠拟合,并对模型进行评估和比较。 最后,数学还有其他分支与机器学习密切相关,如图论、离散数学和信息论。图论帮助我们理解和建模复杂的关系网络。离散数学提供了解决离散问题的工具和方法。信息论则涉及消息的编码和传输,为我们提供了衡量数据的不确定性和相关性的度量方式。 总而言之,数学为机器学习提供了强大的理论基础和实用工具。它不仅帮助我们理解机器学习的原理和方法,还为我们解决实际问题提供了数学模型和算法。因此,数学是机器学习不可或缺的一部分。 ### 回答2: 数学对于机器学习非常重要。机器学习是一种通过自动学习和推理来改进系统性能的方法。它涉及到大量的数据处理、模型构建和预测分析。数学提供了机器学习的基础理论和方法。下面我会具体介绍数学在机器学习中的几个关键方面。 首先,线性代数是机器学习中的基础。矩阵和向量是线性代数的基本工具,用于表示和处理数据。在机器学习中,数据通常以矩阵和向量的形式进行处理和运算。线性代数还提供了矩阵分解和特征值分析等重要技术,用于数据降维和模型优化。 其次,概率论和统计学是机器学习的核心概念。机器学习算法的设计和评估都依赖于统计学的基本方法。概率论使我们能够对不确定性进行建模,并通过统计学方法对数据进行分析和推断。这些技术可以帮助我们理解模型的性质,评估模型的性能,并做出有根据的决策。 另外,优化理论在机器学习中起着关键的作用。机器学习算法通常通过最小化或最大化某种损失函数来优化模型。优化理论提供了一系列数学方法,用于寻找最优解。这些方法可以帮助我们找到参数的最佳取值,进而提高模型的性能。 最后,微积分也是机器学习的重要工具。微积分用于解决连续域的优化问题,例如梯度下降法。梯度下降法是一种常用的优化算法,通过迭代地调整模型参数,使得损失函数逐渐减小。 总而言之,数学为机器学习提供了理论基础和实践工具。线性代数、概率论和统计学、优化理论以及微积分等数学方法在机器学习中发挥着重要的作用,帮助我们理解和解决实际问题。因此,学习数学对于理解和应用机器学习是非常重要的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值