思岚激光雷达+cartographer建图

系统环境:

Ubuntu18.04

ROS Melodic

gcc 7.5.0

1.安装思岚ROS包

1.1 clone并编译

cd catkin_ws/src/
git clone https://github.com/Slamtec/rplidar_ros.git
cd ..
catkin_make

1.2 修改rplidar_ros/launch/rplidar.launch中的波特率

1.3 试一下效果

source devel/setup.bash
roslaunch rplidar_ros view_rplidar.launch

效果如图

2.部署cartographer

参考官方文档

sudo apt-get update
sudo apt-get install -y python3-wstool python3-rosdep ninja-build stow

# 此处为cartographer新建了一个ws
mkdir carto_ws
cd carto_ws
wstool init src
wstool merge -t src https://raw.githubusercontent.com/cartographer-project/cartographer_ros/master/cartographer_ros.rosinstall
wstool update -t src

# 安装依赖
# 如果安装ROS的时候执行过'sudo rosdep init',那么这里会报错,报错可以忽略
sudo rosdep init
rosdep update
rosdep install --from-paths src --ignore-src --rosdistro=${ROS_DISTRO} -y

# 安装abseil-cpp library
src/cartographer/scripts/install_abseil.sh

# 编译并安装
catkin_make_isolated --install --use-ninja

试一下官方给的demo

wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/cartographer_paper_deutsches_museum.bag
source install_isolated/setup.bash
roslaunch cartographer_ros demo_backpack_2d.launch bag_filename:=${HOME}/Downloads/cartographer_paper_deutsches_museum.bag

这里是2D的bag,3D的文件太大,故没有下载

如果成功了则可进行下一步

3.使用自己的激光雷达数据

3.1 修改revo_lds.lua

gedit carto_ws/src/cartographer_ros/cartographer_ros/configuration_files/revo_lds.lua

我的lua如下:

include "map_builder.lua"
include "trajectory_builder.lua"

options = {
  map_builder = MAP_BUILDER,
  trajectory_builder = TRAJECTORY_BUILDER,
  map_frame = "map",
  tracking_frame = "laser",
  published_frame = "laser",
  odom_frame = "base_link",
  provide_odom_frame = true,
  publish_frame_projected_to_2d = false,
  use_pose_extrapolator = true,
  use_odometry = false,
  use_nav_sat = false,
  use_landmarks = false,
  num_laser_scans = 1,
  num_multi_echo_laser_scans = 0,
  num_subdivisions_per_laser_scan = 1,
  num_point_clouds = 0,
  lookup_transform_timeout_sec = 0.2,
  submap_publish_period_sec = 0.3,
  pose_publish_period_sec = 5e-3,
  trajectory_publish_period_sec = 30e-3,
  rangefinder_sampling_ratio = 1.,
  odometry_sampling_ratio = 1.,
  fixed_frame_pose_sampling_ratio = 1.,
  imu_sampling_ratio = 1.,
  landmarks_sampling_ratio = 1.,
}

MAP_BUILDER.use_trajectory_builder_2d = true

TRAJECTORY_BUILDER_2D.submaps.num_range_data = 35
TRAJECTORY_BUILDER_2D.min_range = 0.3
TRAJECTORY_BUILDER_2D.max_range = 8.
TRAJECTORY_BUILDER_2D.missing_data_ray_length = 1.
TRAJECTORY_BUILDER_2D.use_imu_data = false
TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = true
TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.linear_search_window = 0.1
TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.translation_delta_cost_weight = 10.
TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.rotation_delta_cost_weight = 1e-1

POSE_GRAPH.optimization_problem.huber_scale = 1e2
POSE_GRAPH.optimize_every_n_nodes = 35
POSE_GRAPH.constraint_builder.min_score = 0.65

return options

3.2 修改demo_revo_lds.launch

gedit carto_ws/src/cartographer_ros/cartographer_ros/launch/demo_revo_lds.launch

我的launch如下:

<launch>
  <param name="/use_sim_time" value="false" />

  <node name="cartographer_node" pkg="cartographer_ros"
      type="cartographer_node" args="
          -configuration_directory $(find cartographer_ros)/configuration_files
          -configuration_basename revo_lds.lua"
      output="screen">
    <remap from="scan" to="scan" />
  </node>

  <node name="cartographer_occupancy_grid_node" pkg="cartographer_ros"
      type="cartographer_occupancy_grid_node" args="-resolution 0.05" />

  <node name="rviz" pkg="rviz" type="rviz" required="true"
      args="-d $(find cartographer_ros)/configuration_files/demo_2d.rviz" />
</launch>

3.3 再次编译

cd carto_ws
catkin_make_isolated --install --use-ninja

 4.试一下效果

roslaunch rplidar_ros rplidar.launch
roslaunch cartographer_ros demo_revo_lds.launch

如果找不到包,记得source setup.bash

效果如下

5.参考文章

Cartographer ROS Integration — Cartographer ROS documentation

使用思岚A2激光雷达结合cartographer建图算法手持建图_这个昵称已已已存在的博客-CSDN博客_cartographer手持建图

### ROS2 中使用激光雷达实现 SLAM #### 启动雷达节点 为了在 ROS2 中启动雷达 (RPLIDAR),需要安装 `rplidar_ros2` 包。此包提供了 RPLIDAR 设备通信的功能。 ```bash sudo apt-get install ros-foxy-rplidar-ros2 ``` 之后,在终端中启动 RPLIDAR 节点: ```bash ros2 launch rplidar_ros2 rplidar_a1_launch.py ``` 这一步骤确保了激光扫描数据能够被正确发布到 `/scan` 主题上[^2]。 #### 配置 Cartographer 或其他 SLAM 解决方案 对于 SLAM 功能,可以选择多种方法来处理来自雷达的数据并创。一种流行的选择是 Google 开发的 Cartographer,它支持 ROS2 并能高效地完成二维和三维环境的地绘制工作。 如果决定采用 Cartographer,则需先安装对应的 ROS2 版本: ```bash sudo apt-get install ros-foxy-cartographer-ros ``` 接着配置 cartographer 的参数文件以适应具体的应用场景需求。通常这些设置涉及传感器模型、匹配策略以及优化选项等方面[^1]。 #### 运行 SLAM 流程 当一切准备就绪后,可以通过如下命令开启完整的 SLAM 工作流: ```bash ros2 launch cartographer_ros demo_backpack_2d.launch.py \ params_file:=<path_to_your_params>.lua ``` 上述指令中的 `<path_to_your_params>` 应替换为实际路径指向自定义或默认的 Lua 参数脚本位置。该过程将自动订阅由 RPLIDAR 发布的话题,并利用接收到的信息实时更新内部表示的地结构。 #### 可视化工具 RViz2 最后但同样重要的是,可以借助于强大的可视化软件 RViz 来观察整个的过程。只需简单输入以下命令即可打开形界面查看器: ```bash rviz2 -d $(ros2 pkg prefix --share cartographer_rviz)/configuration_files/demo.rviz ``` 这样就可以直观看到随着机器人的移动而逐渐形成的周围环境地了。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值