Cartographer使用3D激光雷达建立2D导航图(概率栅格地图)_cartographer 2d定位可以导入3d模式下建好的地图吗

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

<launch>
  <param name="robot\_description"
    textfile="$(find cartographer\_ros)/urdf/my\_backpack\_3d.urdf" />//换成自己的机器人配置文件

  <node name="robot\_state\_publisher" pkg="robot\_state\_publisher"
    type="robot\_state\_publisher" />

  <node name="cartographer\_node" pkg="cartographer\_ros"
      type="cartographer\_node" args="
          -configuration_directory $(find cartographer_ros)/configuration_files
          -configuration_basename my_robot_3d.lua"	//换成自己配置文件
      output="screen">
	<remap from="points2" to="/rfans\_driver/rfans\_points" />//换成自己的bag包数据中的点云话题
	
  </node>

  <node name="cartographer\_occupancy\_grid\_node" pkg="cartographer\_ros"
      type="cartographer\_occupancy\_grid\_node" args="-resolution 0.05" />  
</launch>

会看点云话题吗?用这个命令查看

# rosbag info \*\*\*\*\*.bag

在这里插入图片描述看到这个topics中sensor_msgs/PointCloud2的这个话题类型了吗?前面的就是你自己数据的点云话题,我的点云话题是/rfans_driver/rfans_points,所以在launch文件中,把点云话题改成自己的

3. 配置lua文件
首先看一下使用官方backpack_3d.lua文件生成图的效果

include "map\_builder.lua"
include "trajectory\_builder.lua"

options = {
  map_builder = MAP\_BUILDER,
  trajectory_builder = TRAJECTORY\_BUILDER,
  map_frame = "map",
  tracking_frame = "base\_link",
  published_frame = "base\_link",
  odom_frame = "odom",
  provide_odom_frame = true,
  publish_frame_projected_to_2d = false,
  use_odometry = false,
  use_nav_sat = false,
  use_landmarks = false,
  num_laser_scans = 0,
  num_multi_echo_laser_scans = 0,
  num_subdivisions_per_laser_scan = 1,
  num_point_clouds = 2,
  lookup_transform_timeout_sec = 0.2,
  submap_publish_period_sec = 0.3,
  pose_publish_period_sec = 5e-3,
  trajectory_publish_period_sec = 30e-3,
  rangefinder_sampling_ratio = 1.,
  odometry_sampling_ratio = 1.,
  fixed_frame_pose_sampling_ratio = 1.,
  imu_sampling_ratio = 1.,
  landmarks_sampling_ratio = 1.,
}

TRAJECTORY\_BUILDER\_3D.num_accumulated_range_data = 160

MAP\_BUILDER.use_trajectory_builder_3d = true
MAP\_BUILDER.num_background_threads = 7
POSE\_GRAPH.optimization_problem.huber_scale = 5e2
POSE\_GRAPH.optimize_every_n_nodes = 320
POSE\_GRAPH.constraint_builder.sampling_ratio = 0.03
POSE\_GRAPH.optimization_problem.ceres_solver_options.max_num_iterations = 10
POSE\_GRAPH.constraint_builder.min_score = 0.62
POSE\_GRAPH.constraint_builder.global_localization_min_score = 0.66

return options

看一下官方3d bag包跑出来的效果
在这里插入图片描述看起来效果还可以吧
再看一下我建的图
在这里插入图片描述我先说一下这张图的问题:1.为什么没有出现白色区域(已知区域)2.为什么有这么多的噪点
后来重新调整了lua文件
my_robot_3d.lua

include "map\_builder.lua"
include "trajectory\_builder.lua"


options = {
  map_builder = MAP\_BUILDER,
  trajectory_builder = TRAJECTORY\_BUILDER,
  map_frame = "map",
  tracking_frame = "base\_link",	--imu
  published_frame = "base\_link",   --laser
  odom_frame = "odom",
  provide_odom_frame = false,
  publish_frame_projected_to_2d = false,
  use_odometry = false,
  use_nav_sat = false,
  use_landmarks = false,
  num_laser_scans =0,
  num_multi_echo_laser_scans = 0,
  num_subdivisions_per_laser_scan = 1,
  num_point_clouds = 1,
  lookup_transform_timeout_sec = 0.2,
  submap_publish_period_sec = 0.3,
  pose_publish_period_sec = 5e-3,
  trajectory_publish_period_sec = 30e-3,
  rangefinder_sampling_ratio = 1.,
  odometry_sampling_ratio = 1,    --1.
  fixed_frame_pose_sampling_ratio = 1.,
  imu_sampling_ratio = 1.,
  landmarks_sampling_ratio = 1.,
}

TRAJECTORY\_BUILDER\_2D.min_z = 0.1
TRAJECTORY\_BUILDER\_2D.max_z = 1.5
TRAJECTORY\_BUILDER\_3D.num_accumulated_range_data = 1   	--1
TRAJECTORY\_BUILDER\_3D.min_range = 1.3			--houjia
TRAJECTORY\_BUILDER\_3D.max_range = 25.			--houjia
TRAJECTORY\_BUILDER\_3D.use_online_correlative_scan_matching = true		--houjia
--TRAJECTORY\_BUILDER\_3D.submaps.num_range_data=90.

MAP\_BUILDER.use_trajectory_builder_3d = true
MAP\_BUILDER.num_background_threads = 7
POSE\_GRAPH.optimization_problem.huber_scale = 5e2
POSE\_GRAPH.optimize_every_n_nodes = 60
POSE\_GRAPH.constraint_builder.sampling_ratio = 0.03
POSE\_GRAPH.optimization_problem.ceres_solver_options.max_num_iterations = 10
POSE\_GRAPH.constraint_builder.min_score = 0.62
POSE\_GRAPH.constraint_builder.global_localization_min_score = 0.66

return options

出现了如下效果图,噪点没有了,至关重要的一个参数是TRAJECTORY_BUILDER_3D.use_online_correlative_scan_matching = true
在这里插入图片描述这个参数的作用就是开启实时的闭环检测来进行前段的扫描匹配,所以生成的图效果非常好,就是计算量会增大,消耗更多CPU。

但是这个图还是不能用来导航啊,只有灰色和黑色区域(也就是障碍物和未知区域)。

现在剩下的问题就是要解决白色区域了

1.2在线或离线生成pbstream文件,再转成pgm,yaml文件

在线生成pbstream文件,还是启动上个方法的launch文件

# roslaunch cartographer_ros my_demo_backpack_3d.launch bag_filename:=${HOME}/Downloads/\*\*\*.bag

在rviz生成图了之后,启动一个新终端使用如下命令:

# rosservice call /finish_trajectory 0 	//停止接受传感器数据
# rosservice call /write_state  /home/路径/\*\*\*.pbstream //生成pbstream文件

接下来就是生成pgm文件

# roslaunch cartographer_ros assets_writer_ros_map.launch bag_filenames:=${HOME}/Downloads/2020-04-29-11-25-22.bag pose_graph_filename:=${HOME}/Downloads/2020-04-29-11-25-22.bag.pbstream

把bag文件路径和pbstream文件路径改成你自己的,生成图如下:

在这里插入图片描述
但是在路线闭环的情况下,就会出现激光雷达的波纹信息,如下图

在这里插入图片描述
虽然这种方法有白色可通行区域,但这个雷达波纹和行车轨迹看起来很恶心啊。
离线的方法我就不说了,效果是一样的。离线生成启动的launch文件是

roslaunch cartographer_ros offline_backpack_3d.launch bag_filenames:=${HOME}/Downloads/2020-05-13-16-37-40.bag

一样把launch文件换成自己的点云话题!运行完之后会直接生成pbstream文件

2.最终方案!使用3d点云数据直接在rviz上生成2d图(导航图,栅格图)

这种方法是需要里程计/odom信息,不用imu信息
先贴自己配置图
demo_zch_2d.launch

<launch>
  <param name="/use\_sim\_time" value="true" />
  <!-- <node pkg="tf" type="static\_transform\_publisher" name="base\_laser\_broadcaster" args="0 0 0 0 0 0 laserbase\_footprint /base\_footprint 20" /> -->
  <include file="$(find cartographer\_ros)/launch/zch\_rslidar\_2d.launch" />
  <node name="cartographer\_node" pkg="cartographer\_ros"
      type="cartographer\_node" args="
          -configuration_directory
              $(find cartographer_ros)/configuration_files
          -configuration_basename zch_rslidar_2d.lua"//你自己的lua文件
      output="screen">
      <remap from="/odom" to="/odom" />		//你自己的里程计话题
      <remap from="/points2" to="/rfans\_driver/rfans\_points" />  //你自己的点云话题
  </node>
  <node name="rviz" pkg="rviz" type="rviz" required="true"
      args="-d $(find cartographer\_ros)/configuration\_files/rslidar\_2d.rviz" />
  <node name="cartographer\_occupancy\_grid\_node" pkg="cartographer\_ros"
      type="cartographer\_occupancy\_grid\_node" args="-resolution 0.05" />
</launch>

zch_rslidar_2d.launch

<launch>
  <param name="robot\_description"
    textfile="$(find cartographer\_ros)/urdf/my\_backpack\_3d.urdf" />

  <node name="robot\_state\_publisher" pkg="robot\_state\_publisher"
    type="robot\_state\_publisher" />
</launch>

zch_rslidar_2d.lua

include "map\_builder.lua"
include "trajectory\_builder.lua"

options = {
  map_builder = MAP\_BUILDER,
  trajectory_builder = TRAJECTORY\_BUILDER,
  map_frame = "map",
  tracking_frame = "base\_link",
  published_frame = "base\_link",
  odom_frame = "odom",
  provide_odom_frame = true,
  publish_frame_projected_to_2d = false,
  use_odometry = true,
  use_nav_sat = false,
  use_landmarks = false,
  num_laser_scans = 0,
  num_multi_echo_laser_scans = 0,
  num_subdivisions_per_laser_scan = 1,


![img](https://img-blog.csdnimg.cn/img_convert/ad8a79cf30dc0ac7216b8ea9d7fcd888.png)
![img](https://img-blog.csdnimg.cn/img_convert/c2ece18a977883f132dc53ad92b72d4a.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化的资料的朋友,可以添加戳这里获取](https://bbs.csdn.net/topics/618668825)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

1715737718562)]
[外链图片转存中...(img-EbhUTRlK-1715737718563)]

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化的资料的朋友,可以添加戳这里获取](https://bbs.csdn.net/topics/618668825)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值