带安全启动—Ubuntu系统—手动安装Nvidia驱动

教程1:在启用安全启动的 Fedora 中安装英伟达驱动
教程2:UEFI安全启动模式下安装Ubuntu的NVIDIA显卡驱动

1. 搜索合适的驱动

Nvidia驱动官网
选择这个
驱动(.run)链接

2. 安装必要的软件依赖

CUDA底层用C++写的,因此导入编译器

sudo apt install update
sudo apt install gcc
sudo apt install g++
sudo apt install make

3. 禁用集成显卡驱动nouveau

编辑系统(etc)的黑名单列表文件

sudo nano /etc/modprobe.d/blacklist.conf

把nouveau加入黑名单

blacklist nouveau

Ctrl+s保存,Ctrl+X退出,重载黑名单

sudo update-initramfs -u

4. 安装nvidia显卡驱动

更改权限,执行驱动安装文件

cd 下载
chmod +x NVIDIA-Linux-x86_64-550.90.07.run
./NVIDIA-Linux-x86_64-550.90.07.run

提醒你关闭所有使用NVIDIA GPU的程序防止崩溃:
在这里插入图片描述
提醒你安装Nvidia驱动的另一种方式:
从"软件和更新"应用中,从附加驱动标签下选择NVIDIA Drivers;
在这里插入图片描述
proceeding…
在这里插入图片描述
目标内核(Linux内核)支持内核模块(如NVIDIA显卡驱动)加密签名,如果没有有效的签名,内核可能会拒绝工作,要给该内核签名吗?
在这里插入图片描述
选择签名方式——生成一个新的密钥对,
在这里插入图片描述
删除私钥,但保留公钥
在这里插入图片描述
加载证书到内核信任的关键数据库,使得内核能够验证模块签名:
在这里插入图片描述
拒绝用DKMS为N卡注册内核模块 ,自动构建一个新的模块(这里选否)。
在这里插入图片描述

DKMS(dynamic kernel module support)

course

安装NVIDIA显卡驱动
在这里插入图片描述
完成
在这里插入图片描述
建议重启,来重载NVIDIA模块。
在这里插入图片描述

5. 重启

在这里插入图片描述
进入NVIDIA模块

cd /usr/share/nvidia
ls

mokutil导入公钥到内核的信任列表中

mokutil --import nvidia-modsign-crt-6B2E78DA.der

mokutil是一个Linux命令,它用于管理UEFI Secure Boot中的机密所有者键(MOK)。UEFI Secure Boot是一种安全功能,可以防止未经授权的操作系统或驱动程序加载到计算机上。MOK是用于验证操作系统或驱动程序签名的密钥。mokutil命令可以用来查看、添加、删除和更新MOK密钥,以及启用或禁用Secure Boot。

接下来会提示输入公钥的访问密码,两次输入后重启系统,

通过上下键选择,Enter键确认。
在perform MOK mangement界面选择enroll mok。
在这里插入图片描述
选择continue(enroll mok界面),yes,输入公钥访问密码,
在这里插入图片描述
boot即可,nvidia-smi即可看到显卡信息。
在这里插入图片描述

<think>嗯,用户现在问的是如何搭建一个基于大模型的7*24小时自动应答系统。之前他们提到自己是从程序员转行做拼多多电商,可能需要这样的系统来处理客服问题,提高效率。那用户可能有技术背景,但需要具体的步骤和实现方法。 首先,我需要明确用户的需求。自动应答系统主要用于电商客服,处理常见问题,比如订单查询、退换货政策、物流信息等。用户可能希望这个系统能够全天候运行,减少人工客服的压力,同时保持响应速度和准确性。 接下来要考虑的是系统的架构。用户作为程序员,可能对API调用、前后端开发比较熟悉。所以应该分模块来设计,比如大模型接口、业务逻辑处理、多轮对话管理、数据存储等。需要提到技术选型,比如使用Flask或FastAPI作为后端,结合DeepSeek的API,可能还需要用到数据库如MySQL或Redis来存储对话记录和知识库。 然后,数据准备是关键。用户需要整理常见的客服问题,构建知识库,可能还需要处理拼多多平台特定的术语和政策。这里可能需要数据清洗和分类,比如使用正则表达式或关键词匹配来预处理问题。 多轮对话管理部分,用户可能需要状态机或者基于规则引擎的设计,确保系统能够处理复杂的对话流程,比如退货需要订单号、商品问题等步骤。这里可能需要结合业务逻辑,设计对话状态转移的逻辑。 异步处理和高可用性方面,用户可能需要使用消息队列如RabbitMQ或Kafka来处理高并发请求,同时用Nginx做负载均衡,确保系统稳定运行。监控和日志也是必须的,方便后期维护和优化。 合规性方面,拼多多平台可能有特定的规定,比如响应时间、用语规范等。系统需要过滤敏感词,避免违规,同时符合平台的数据安全要求。这部分可能需要接入平台的审核接口或者自建过滤机制。 最后,持续优化部分,用户需要收集对话数据,分析未解决问题,定期更新知识库和模型。可能需要A/B测试不同回复策略的效果,调整模型参数或提示词模板。 用户作为有技术背景的转行者,可能更关注具体的实现步骤和技术细节,所以需要给出清晰的模块划分和示例代码,比如使用Python调用DeepSeek API,结合Flask搭建服务。同时,结合电商场景,强调处理拼多多特有的问题和流程,比如拼团订单、退款规则等,确保系统在实际业务中的适用性。</think>搭建基于大模型的7*24小时自动应答系统,可结合你的编程能力实现技术闭环。以下是具体实现方案(含技术细节): --- ### **一、系统架构设计(程序员优势领域)** ```mermaid graph TD A[用户请求] --> B(Nginx负载均衡) B --> C[API网关] C --> D{业务类型判断} D -->|常规问题| E[大模型接口] D -->|订单查询| F[业务系统对接] D -->|敏感问题| G[人工接管] E --> H[知识库增强] F --> I[数据中台] H --> J[回复生成] J --> K[合规过滤] K --> L[多通道响应] ``` --- ### **二、关键技术实现步骤** #### **1. 大模型接口工程化(你的核心技术点)** ```python # 使用异步提升并发能力(FastAPI + AIOHTTP) from deepseek_api import DeepSeekChat async def generate_response(query: str, context: list): prompt = f""" [电商客服模式] 你是有3年经验的拼多多官方客服,请用口语化中文回复,要求: 1. 严格遵守平台《客服应答规范V2.3》 2. 当前对话上下文:{context[-3:]} 3. 用户问题:{query} 4. 优先使用知识库数据,若不确定需明确告知 """ async with aiohttp.ClientSession() as session: return await DeepSeekChat(session).generate( prompt=prompt, temperature=0.2, # 控制回答稳定性 max_tokens=500 ) ``` #### **2. 多轮对话状态管理(程序员核心价值)** ```python # 基于Redis的对话状态机 import redis r = redis.Redis(host='localhost', port=6379, db=0) class DialogState: def __init__(self, user_id): self.key = f"dialog:{user_id}" def update_context(self, new_query): # 保持最近5轮对话 r.lpush(self.key, new_query) r.ltrim(self.key, 0, 4) def get_context(self): return r.lrange(self.key, 0, -1) ``` --- ### **三、电商专属功能强化** #### **1. 拼多多业务系统对接** ```python # 订单查询接口封装示例 class PDDOrderAPI: def __init__(self, shop_token): self.base_url = "https://api.pinduoduo.com/api/router" self.token = shop_token def get_order_status(self, order_no): params = { "type": "pdd.logistics.trace.get", "order_sn": order_no, "access_token": self.token } return requests.post(self.base_url, json=params).json() ``` #### **2. 敏感词过滤系统(合规必备)** ```python # 动态加载平台违禁词库 class KeywordFilter: def __init__(self): self.pattern = self._load_pattern() def _load_pattern(self): with open("pdd_prohibited_words.txt") as f: words = [line.strip() for line in f] return re.compile("|".join(words)) def check(self, text): return bool(self.pattern.search(text)) ``` --- ### **四、运维保障体系(7*24核心)** #### **1. 监控告警方案** ```bash # Prometheus监控指标示例 pdd_customer_service_requests_total{status="success"} 2384 pdd_customer_service_requests_total{status="failed"} 12 pdd_response_time_seconds{quantile="0.95"} 1.2 ``` #### **2. 自动扩容策略** ```yaml # Kubernetes HPA配置示例 apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: customer-service minReplicas: 3 maxReplicas: 20 metrics: - type: Resource resource: name: cpu target: type: Utilization averageUtilization: 70 ``` --- ### **五、电商场景优化技巧** 1. **拼团特殊话术处理** ```python def group_order_response(order_info): if order_info['group_status'] == 'pending': return "您的拼团还未成团,当前已有{}/3人参与,可分享到微信群加速成团".format( order_info['joined_users'] ) ``` 2. **物流时效智能承诺** ```python # 根据发货地-收货地矩阵预测 shipping_matrix = { "浙江-上海": {"min": 24, "max": 48}, "广东-北京": {"min": 48, "max": 72} } def predict_delivery(from_, to_): key = f"{from_}-{to_}" return shipping_matrix.get(key, {"min":72, "max":120}) ``` --- ### **六、成本控制建议** 1. **混合响应策略** - 高频简单问题(占比60%):使用规则引擎直接响应 - 中等复杂度问题(30%):大模型生成 - 疑难问题(10%):转人工 2. **缓存优化方案** ```python # 使用LRU缓存高频问答 from functools import lru_cache @lru_cache(maxsize=1000) def get_cached_response(query): return generate_response(query) ``` --- 作为技术转型的电商从业者,建议采取分阶段实施: 1. **第一阶段**:先用FastAPI+DeepSeek搭建最小可行系统,处理简单咨询 2. **第二阶段**:接入订单查询等业务系统,实现状态查询 3. **第三阶段**:构建完整的知识库体系和多轮对话管理 关键注意点:需特别关注拼多多平台的《智能客服对接规范》,在敏感词过滤、响应延迟(要求<2秒)、人工接管率等指标上符合平台要求。可利用你的编程能力开发自动化测试工具,批量验证客服应答合规性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值