2.6 二次型

本章围绕二次型的标准化、惯性指数、正定性及矩阵关系展开,是线性代数综合应用的集中体现。以下从四个核心考点系统梳理知识体系:


考点一:化二次型为标准型

1. ​正交变换法

步骤​:

  • 构造实对称矩阵​:写出二次型对应的系数矩阵 A A A(实对称矩阵)
  • 求特征值与特征向量​:
    • 解特征方程 ∣ λ E − A ∣ = 0 |\lambda E - A| = 0 λEA=0 得特征值 λ i \lambda_i λi
    • 对每个 λ i \lambda_i λi,解齐次方程组 ( λ i E − A ) x = 0 (\lambda_i E - A)x = 0 (λiEA)x=0 得特征向量
  • 正交化与单位化​:
    • 对重根特征值对应的特征向量进行施密特正交化,并单位化为单位向量 γ i \gamma_i γi
  • 构造正交矩阵​:令 Q = ( γ 1 , γ 2 , γ 3 ) Q = (\gamma_1, \gamma_2, \gamma_3) Q=(γ1,γ2,γ3),在正交变换 x = Q y x = Qy x=Qy 下,二次型化为标准形:
    f = λ 1 y 1 2 + λ 2 y 2 2 + λ 3 y 3 2 f = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2 f=λ1y12+λ2y22+λ3y32

2. ​配方法

步骤​:

  • 配方换元​:通过配方将二次型改写为平方项组合,并通过可逆线性替换 x = C y x = Cy x=Cy 化为标准形
    • 关键​:必须保证变换矩阵 C C C 可逆;先配交叉项,再配平方项
  • 无平方项处理​:
    • 若二次型无平方项,先通过换元 x i = y i + y j x_i = y_i + y_j xi=yi+yj,引入平方项后再配方。

考点二:二次型的正负惯性指数

1. ​定义与性质

  • 正惯性指数 p p p​:
    正特征值的个数 = 配方法中正平方项系数个数(不含零)
  • 负惯性指数 q q q​:
    负特征值的个数 = 配方法中负平方项系数个数(不含零)
  • 秩关系​: p + q = r ( A ) = 二次型的秩 p + q = r(A) = \text{二次型的秩} p+q=r(A)=二次型的秩

2. ​规范型与合同

  • 若两个二次型规范型相同,则它们合同,表示同一类二次型。

3. ​二次曲面的几何意义

规范型符号二次曲面类型示例
( + , + , + ) (+,+,+) (+,+,+)椭球面 x 2 + y 2 + z 2 = 1 x^2 + y^2 + z^2 = 1 x2+y2+z2=1
( + , + , − ) (+,+,-) (+,+,)单叶双曲面 x 2 + y 2 − z 2 = 1 x^2 + y^2 - z^2 = 1 x2+y2z2=1
( + , − , − ) (+,-,-) (+,,)双叶双曲面 x 2 − y 2 − z 2 = 1 x^2 - y^2 - z^2 = 1 x2y2z2=1
( + , + , 0 ) (+,+,0) (+,+,0)椭圆柱面 x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1
( + , − , 0 ) (+,-,0) (+,,0)双曲柱面 x 2 − y 2 = 1 x^2 - y^2 = 1 x2y2=1
( + , 0 , 0 ) (+,0,0) (+,0,0)两个平行平面 x 2 = 1 x^2 = 1 x2=1

考点三:二次型的正定性

正定充要条件

  1. ∀ x ≠ 0 \forall x \neq 0 x=0, x ⊤ A x > 0 x^\top A x > 0 xAx>0
  2. 所有特征值 λ i > 0 \lambda_i > 0 λi>0
  3. 配方法所得系数均 > 0(平方项系数全正)
  4. 正惯性指数 p = n p = n p=n
  5. 所有顺序主子式 > 0

负定充要条件

  1. ∀ x ≠ 0 \forall x \neq 0 x=0, x ⊤ A x < 0 x^\top A x < 0 xAx<0
  2. 所有特征值 λ i < 0 \lambda_i < 0 λi<0
  3. 配方法所得系数均 < 0(平方项系数全负)
  4. 负惯性指数 q = n q = n q=n
  5. 奇数阶顺序主子式 < 0,偶数阶顺序主子式 > 0

考点四:等价、相似、合同的关系

1. ​等价(Equivalence)​

  • 定义​:存在可逆矩阵 P , Q P, Q P,Q 使得 P A Q = B PAQ = B PAQ=B
  • 条件​: A , B A, B A,B 同型且秩相等

2. ​相似(Similarity)​

  • 定义​:存在可逆矩阵 P P P 使得 P − 1 A P = B P^{-1}AP = B P1AP=B
  • 性质​:
    • 特征值相同
    • 实对称矩阵可相似对角化 ⇔ A ∼ Λ \Leftrightarrow A \sim \Lambda AΛ

3. ​合同(Congruence)​

  • 定义​:存在可逆矩阵 P P P 使得 P ⊤ A P = B P^\top AP = B PAP=B
  • 实对称矩阵合同条件​:
    • 正负惯性指数相同
    • 合同于对角矩阵

4. ​关系总结

  • 包含关系​:
    合同 ⊆ \subseteq 相似 ⊆ \subseteq 等价(对一般矩阵)
    实对称矩阵:合同 ⇔ \Leftrightarrow 相似(当特征值符号一致时)
  • 正定矩阵特殊性​:正定矩阵必合同于单位矩阵 E E E

总结

本章重点掌握:

  1. 正交变换法与配方法的标准化流程
  2. 惯性指数与几何意义的对应关系
  3. 正定性的多角度判定条件
  4. 等价、相似、合同的区别与联系
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值