本章围绕二次型的标准化、惯性指数、正定性及矩阵关系展开,是线性代数综合应用的集中体现。以下从四个核心考点系统梳理知识体系:
考点一:化二次型为标准型
1. 正交变换法
步骤:
- 构造实对称矩阵:写出二次型对应的系数矩阵 A A A(实对称矩阵)
- 求特征值与特征向量:
- 解特征方程 ∣ λ E − A ∣ = 0 |\lambda E - A| = 0 ∣λE−A∣=0 得特征值 λ i \lambda_i λi
- 对每个 λ i \lambda_i λi,解齐次方程组 ( λ i E − A ) x = 0 (\lambda_i E - A)x = 0 (λiE−A)x=0 得特征向量
- 正交化与单位化:
- 对重根特征值对应的特征向量进行施密特正交化,并单位化为单位向量 γ i \gamma_i γi
- 构造正交矩阵:令
Q
=
(
γ
1
,
γ
2
,
γ
3
)
Q = (\gamma_1, \gamma_2, \gamma_3)
Q=(γ1,γ2,γ3),在正交变换
x
=
Q
y
x = Qy
x=Qy 下,二次型化为标准形:
f = λ 1 y 1 2 + λ 2 y 2 2 + λ 3 y 3 2 f = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2 f=λ1y12+λ2y22+λ3y32
2. 配方法
步骤:
- 配方换元:通过配方将二次型改写为平方项组合,并通过可逆线性替换
x
=
C
y
x = Cy
x=Cy 化为标准形
- 关键:必须保证变换矩阵 C C C 可逆;先配交叉项,再配平方项
- 无平方项处理:
- 若二次型无平方项,先通过换元 x i = y i + y j x_i = y_i + y_j xi=yi+yj,引入平方项后再配方。
考点二:二次型的正负惯性指数
1. 定义与性质
- 正惯性指数
p
p
p:
正特征值的个数 = 配方法中正平方项系数个数(不含零) - 负惯性指数
q
q
q:
负特征值的个数 = 配方法中负平方项系数个数(不含零) - 秩关系: p + q = r ( A ) = 二次型的秩 p + q = r(A) = \text{二次型的秩} p+q=r(A)=二次型的秩
2. 规范型与合同
- 若两个二次型规范型相同,则它们合同,表示同一类二次型。
3. 二次曲面的几何意义
规范型符号 | 二次曲面类型 | 示例 |
---|---|---|
( + , + , + ) (+,+,+) (+,+,+) | 椭球面 | x 2 + y 2 + z 2 = 1 x^2 + y^2 + z^2 = 1 x2+y2+z2=1 |
( + , + , − ) (+,+,-) (+,+,−) | 单叶双曲面 | x 2 + y 2 − z 2 = 1 x^2 + y^2 - z^2 = 1 x2+y2−z2=1 |
( + , − , − ) (+,-,-) (+,−,−) | 双叶双曲面 | x 2 − y 2 − z 2 = 1 x^2 - y^2 - z^2 = 1 x2−y2−z2=1 |
( + , + , 0 ) (+,+,0) (+,+,0) | 椭圆柱面 | x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1 |
( + , − , 0 ) (+,-,0) (+,−,0) | 双曲柱面 | x 2 − y 2 = 1 x^2 - y^2 = 1 x2−y2=1 |
( + , 0 , 0 ) (+,0,0) (+,0,0) | 两个平行平面 | x 2 = 1 x^2 = 1 x2=1 |
考点三:二次型的正定性
正定充要条件
- ∀ x ≠ 0 \forall x \neq 0 ∀x=0, x ⊤ A x > 0 x^\top A x > 0 x⊤Ax>0
- 所有特征值 λ i > 0 \lambda_i > 0 λi>0
- 配方法所得系数均 > 0(平方项系数全正)
- 正惯性指数 p = n p = n p=n
- 所有顺序主子式 > 0
负定充要条件
- ∀ x ≠ 0 \forall x \neq 0 ∀x=0, x ⊤ A x < 0 x^\top A x < 0 x⊤Ax<0
- 所有特征值 λ i < 0 \lambda_i < 0 λi<0
- 配方法所得系数均 < 0(平方项系数全负)
- 负惯性指数 q = n q = n q=n
- 奇数阶顺序主子式 < 0,偶数阶顺序主子式 > 0
考点四:等价、相似、合同的关系
1. 等价(Equivalence)
- 定义:存在可逆矩阵 P , Q P, Q P,Q 使得 P A Q = B PAQ = B PAQ=B
- 条件: A , B A, B A,B 同型且秩相等
2. 相似(Similarity)
- 定义:存在可逆矩阵 P P P 使得 P − 1 A P = B P^{-1}AP = B P−1AP=B
- 性质:
- 特征值相同
- 实对称矩阵可相似对角化 ⇔ A ∼ Λ \Leftrightarrow A \sim \Lambda ⇔A∼Λ
3. 合同(Congruence)
- 定义:存在可逆矩阵 P P P 使得 P ⊤ A P = B P^\top AP = B P⊤AP=B
- 实对称矩阵合同条件:
- 正负惯性指数相同
- 合同于对角矩阵
4. 关系总结
- 包含关系:
合同 ⊆ \subseteq ⊆ 相似 ⊆ \subseteq ⊆ 等价(对一般矩阵)
实对称矩阵:合同 ⇔ \Leftrightarrow ⇔ 相似(当特征值符号一致时) - 正定矩阵特殊性:正定矩阵必合同于单位矩阵 E E E
总结
本章重点掌握:
- 正交变换法与配方法的标准化流程
- 惯性指数与几何意义的对应关系
- 正定性的多角度判定条件
- 等价、相似、合同的区别与联系