【校招VIP】竞品分析之知乎类产品对比分析

考点介绍:
用户五要素:战略层、表现层、框架层、结构层、范围层次,
本文从产品角度详细分析同类竞品,以最低成本最快方式学习现有成功案例的优秀经验,以便于能够更高效率的推进同类产品的框架搭建和信息设计。

本期分享的内容分为试题、文章及视频三部分,答案详情解析和文章内容点击文章末尾链接即可查看!

一、考点题目

1.下面哪一项不属于做竞品分析的方法(  )
A.体验法
B.FAB法
C.回溯法
D.空雨伞

解答:正确答案是 B    FAB法是在销售中用于说服客户的一种法则。Feature、Advantage和Benefit.....

2.你来说一下百度百科和知乎的区别
解答:1 产品定位维度
百度百科是提供资讯的工具型产品。百度百科是百度为丰富其知识搜索体系所搭建的产品线之一,本质上是为百度搜索体系服务的,所以百度百科不能算是一个纯粹的流量知识平台。而知乎是一个由用户生产内容的社区产品......

3.说说知乎有什么能改进的
解答:题目大意:是用户一般是处于有问题想要求知的心态才会上知乎;但是这种纯问答的形式不够高效,因为当我们想要知道的东西并非一个热点问题或者并非是个真正意义上的问题的时候,知乎无法做到基础概念的标准化科普,类似参考......

4.知乎的产品逻辑是什么?
解答:问答功能作为知乎的核心功能,在两端产品规划中也表现出了较高的优先级设计,提问按钮在WEB端首页搜索框外增加了一个显著的......

5.请从产品经理的角度分析一下,你觉得知乎存在哪些问题是同类产品可以参考的?
解答:随着版本的不断迭代和产品策略的不断改变,知乎的一些问题也逐渐愈发明显,这些问题也可以作为同类产品的参考......

(扫下方海报二维码查看完整版答案)

二、考点文章

1.【校招VIP】用知识连接社区:知乎竞品分析
探索优秀内容社区型产品的产品模式和设计语言,取其精华,去其糟粕,以最低成本最快方式学习现有成功案例的优秀经验,以便于能够更高效率的推进社区产品的框架搭建和信息设计.....

2.【校招VIP】知乎与百度知道竞品分析-用户五要素
用户五要素:战略层、表现层、框架层、结构层、范围层次.....

3.【校招VIP】产品分析-知乎、百度知道、豆瓣
自互联网迅速发展,通过互联网的便捷性加快了知识分享与问题解决的效率,促进网络社区的发展,开启了移动端使用场景进入垂直场景渗透阶段。本文试图就网络问答社区的几大知名产品着手,并从产品角度详细分析同类竞品......

(扫下方海报二维码查看完整版)

三、考点视频

1.试着将知乎介绍给你的父亲或母亲,并下载使用
这个面试题的难点在于如何把对应人群的特点与知乎的特性相连。
所以首先要提取父母辈人的画像、性格和爱好,以及知乎的特性......

相关题目及解析内容可点击下方链接查看:
PC端链接:https://xiaozhao.vip/dTopic/detail/1330
移动端链接:https://m.xiaozhao.vip/dTopic/detail/1330

资源下载链接为: https://pan.quark.cn/s/ddc62c5d4a5d Windows Mobile 是微软在 0200 年代至 2010 年代初推出的移动操作系统,曾广泛应用于智能手机和平板电脑。开发者可以借助各种库和框架为其开发功能丰富的应用,其中 “32feet.NET” 是一个开源的 .NET 库,专为 .NET Framework 和 .NET Compact Framework 提供蓝牙开发支持。它包含多个命名空间,例如 InTheHand.Devices.Bluetooth、InTheHand.Net.Personal 和 InTheHand.Phone.Bluetooth,用于实现蓝牙设备交互功能。 InTheHand.Devices.Bluetooth 命名空间用于执行基础蓝牙操作,比如扫描附近设备、建立连接以及发现蓝牙服务等。InTheHand.Net.Personal 提供了更高级的功能,例如创建个人区域网络(PAN)、文件传输和串行端口模拟,便于开发者开发跨设备的数据共享应用。而 InTheHand.Phone.Bluetooth 主要针对 Windows Phone 平台,支持蓝牙配对、消息收发和蓝牙耳机控制等功能,不过由于 Windows Mobile 已停止更新,该命名空间更多适用于旧设备或项目。 压缩包中的文件列表看似是维基页面的渲染文件,可能是关于 32feet.NET 的使用教程、API 参考或示例代码。文件名如 13632.html、563803.html 等可能是页面 ID,涵盖蓝牙设备搜索、连接和数据传输等不同主题。 使用 32feet.NET 进行蓝牙开发时,开发者需要注意以下几点:首先,确保开发环境已安装 .NET Framework 或 .NET Compact Framework,以及 32feet.NET
资源下载链接为: https://pan.quark.cn/s/d8a2bf0af1ac Mask R-CNN 是一种在实例分割任务中表现优异的深度学习模型,它融合了 Faster R-CNN 的目标检测功能和 CNN 的像素级分类能力,能够实现图像中每个目标的定位、识别与分割。本指南将指导你如何使用 Mask R-CNN 训练自定义数据集。 你需要准备包含图像(JPEG 或 PNG 格式)和标注文件(XML 或 JSON 格式)的数据集,标注文件需包含物体类别、坐标和掩模信息。数据集应按照 COCO 标准组织,分为训练集、验证集和可选的测试集。可以使用工具如 COCO API 或 labelme 将原始数据转换为 COCO 格式,并确保图像文件名与标注文件名一致且在同一目录下。通常按 8:2 或 9:1 的比例划分训练集和验证集。 从提供的压缩包中安装所需库。运行 pip install -r requirements.txt 安装依赖,包括 TensorFlow、Keras、Cython、COCO API 等。 修改 train_test.py 和 test_model.py 中的路径,使其指向你的数据集目录,确保 ROOT_DIR 指向数据集根目录,ANNOTATION_DIR 指向标注文件所在目录。在 config.py 中根据硬件资源和训练目标调整学习率、批大小、迭代次数等参数。 运行 train_test.py 开始训练。训练时会加载预训练权重并进行微调,期间会定期保存模型,便于评估和恢复。 使用 test_model.py 或 test.py 对模型进行验证和测试。这些脚本会加载保存的模型权重,将其应用于新图像并生成预测结果。 预测结果为二进制掩模,需进一步处理为可读图像。可借助 COCO API 或自定义脚本将掩模合并到原始图像上,生成可视化结果。 若模型性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值